13,675 research outputs found
Experimental and numerical investigation of Helmholtz resonators and perforated liners as attenuation devices in industrial gas turbine combustors
This paper reports upon developments in the simulation of the passive control of combustion dynamics in industrial gas turbines using acoustic attenuation devices such as Helmholtz resonators and perforated liners. Combustion instability in gas turbine combustors may, if uncontrolled, lead to large-amplitude pressure fluctuations, with consequent serious mechanical problems in the gas turbine combustor system. Perforated combustor walls and Helmholtz resonators are two commonly used passive instability control devices. However, experimental design of the noise attenuation device is time-consuming and calls for expensive trial and error practice. Despite significant advances over recent decades, the ability of Computational Fluid Dynamics to predict the attenuation of pressure fluctuations by these instability control devices is still not well validated. In this paper, the attenuation of pressure fluctuations by a group of multi-perforated panel absorbers and Helmholtz resonators are investigated both by experiment and computational simulation. It is demonstrated that CFD can predict the noise attenuation from Helmholtz resonators with good accuracy. A porous material model is modified to represent a multi-perforated panel and this perforated wall representation approach is demonstrated to be able to accurately predict the pressure fluctuation attenuation effect of perforated panels. This work demonstrates the applicability of CFD in gas turbine combustion instability control device design
Kondo effect in complex mesoscopic structures
We study the Kondo effect of a quantum dot placed in a complex mesoscopic
structure. Assuming that electronic interactions are taking place solely on the
dot, and focusing on the infinite Hubbard interaction limit, we use a
decoupling scheme to obtain an explicit analytic approximate expression for the
dot Green function, which fulfills certain Fermi-liquid relations at zero
temperature. The details of the complex structure enter into this expression
only via the self-energy for the non-interacting case. The effectiveness of the
expression is demonstrated for the single impurity Anderson model and for the
T-shaped network.Comment: 12 pages 6 figure
Plaquette order and deconfined quantum critical point in the spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice
We have precisely determined the ground state phase diagram of the quantum
spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice using the
tensor renormalization group method. We find that the ferromagnetic,
ferroquadrupolar, and a large part of the antiferromagnetic phases are stable
against quantum fluctuations. However, around the phase where the ground state
is antiferroquadrupolar ordered in the classical limit, quantum fluctuations
suppress completely all magnetic orders, leading to a plaquette order phase
which breaks the lattice symmetry but preserves the spin SU(2) symmetry. On the
evidence of our numerical results, the quantum phase transition between the
antiferromagnetic phase and the plaquette phase is found to be either a direct
second order or a very weak first order transition.Comment: 6 pages, 9 figures, published versio
Geoarchaeological evidence of the AD 1642 Yellow River flood that destroyed Kaifeng, a former capital of dynastic China
Rising global temperatures will increase the number of extreme weather events, creating new challenges for cities around the world. Archaeological research on the destruction and subsequent reoccupation of ancient cities has the potential to reveal geological and social dynamics that have historically contributed to making urban settings resilient to these extreme weather events. Using a combination of archaeological and geological methods, we examine how extreme flood events at Kaifeng, a former capital of dynastic China, have shaped the city’s urban resilience. Specifically, we focus on an extreme Yellow River flood event in AD 1642 that historical records suggest killed around 300,000 people living in Kaifeng. Our recent archaeological excavations have discovered compelling geological and archaeological evidence that corroborates these documents, revealing that the AD 1642 Yellow River flood destroyed Kaifeng’s inner city, entombing the city and its inhabitants within meters of silt and clay. We argue that the AD 1642 flood was extraordinarily catastrophic because Kaifeng’s city walls only partly collapsed, entrapping most of the flood waters within the city. Both the geology of the Yellow River floods as well as the socio-political context of Kaifeng shaped the city’s resilience to extreme flood events
Improved lattice QCD with quarks: the 2 dimensional case
QCD in two dimensions is investigated using the improved fermionic lattice
Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved
theory leads to a significant reduction of the finite lattice spacing errors.
The quark condensate and the mass of lightest quark and anti-quark bound state
in the strong coupling phase (different from t'Hooft phase) are computed. We
find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures
Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography
We report on the fabrication of domain-reversed structures in LiNbO3 by means
of direct electron beam lithography at room temperature without any static
bias. The LiNbO3 crystals were chemically etched after the exposure of electron
beam and then, the patterns of domain inversion were characterized by atomic
force microscopy (AFM). In our experiment, an interesting phenomenon occurred
when the electron beam wrote a one-dimensional (1-D) grating on the negative
c-face: a two-dimensional (2-D) dotted array was observed on the positive c-
face, which is significant for its potential to produce 2-D and
three-dimensional photonic crystals. Furthermore, we also obtained 2-D
ferroelectric domain inversion in the whole LiNbO3 crystal by writing the 2-D
square pattern on the negative c-face. Such a structure may be utilized to
fabricate 2-D nonlinear photonic crystal. AFM demonstrates that a 2-D
domain-reversed structure has been achieved not only on the negative c-face of
the crystal, but also across the whole thickness of the crystal.Comment: 17 pages, 4 figure
Submillimeter continuum observations of Sagittarius B2 at subarcsecond spatial resolution
We report the first high spatial resolution submillimeter continuum
observations of the Sagittarius B2 cloud complex using the Submillimeter Array
(SMA). With the subarcsecond resolution provided by the SMA, the two massive
star-forming clumps Sgr B2(N) and Sgr B2(M) are resolved into multiple compact
sources. In total, twelve submillimeter cores are identified in the Sgr B2(M)
region, while only two components are observed in the Sgr B2(N) clump. The gas
mass and column density are estimated from the dust continuum emission. We find
that most of the cores have gas masses in excess of 100 M and column
densities above 10 cm. The very fragmented appearance of Sgr
B2(M), in contrast to the monolithic structure of Sgr B2 (N), suggests that the
former is more evolved. The density profile of the Sgr B2(N)-SMA1 core is well
fitted by a Plummer density distribution. This would lead one to believe that
in the evolutionary sequence of the Sgr B2 cloud complex, a massive star forms
first in an homogeneous core, and the rest of the cluster forms subsequently in
the then fragmenting structure.Comment: 4 pages, 2 figures, accepted by A&A letter
- …