10,120 research outputs found

    Enhanced Magnetization from Proton Irradiated Bulk van der Waals Magnet CrSiTe3

    Full text link
    Van der Waals (vdWs) crystals have attracted a great deal of scientific attention due to their interesting physical properties and widespread practical applications. Among all, CrSiTe3 (CST) is a ferromagnetic semiconductor with the Curie temperature (TC) of ~32 K. In this letter, we study the magnetic properties of bulk CST single-crystal upon proton irradiation with the fluence of 1x1018 protons/cm2. Most significantly, we observed an enhancement (23%) in the saturation magnetization from 3.9 {\mu}B to 4.8 {\mu}B and is accompanied by an increase in the coercive field (465-542 Oe) upon proton irradiation. Temperature-dependent X-band electron paramagnetic resonance measurements show no additional magnetically active defects/vacancies that are generated upon proton irradiation. The findings from X-ray photoelectron spectroscopy and Raman measurements lead us to believe that modification in the spin-lattice coupling and introduction of disorder could cause enhancement in saturation magnetization. This work demonstrates that proton irradiation is a feasible method in modifying the magnetic properties of vdWs crystals, which represents a significant step forward in designing future spintronic and magneto-electronic applications

    Flicker Noise in Bilayer Graphene Transistors

    Full text link
    We present the results of the experimental investigation of the low - frequency noise in bilayer graphene transistors. The back - gated devices were fabricated using the electron beam lithography and evaporation. The charge neutrality point for the fabricated transistors was around 10 V. The noise spectra at frequencies above 10 - 100 Hz were of the 1/f - type with the spectral density on the order of 10E-23 - 10E-22 A2/Hz at the frequency of 1 kHz. The deviation from the 1/f spectrum at the frequencies below 10 -100 Hz indicates that the noise is of the carrier - number fluctuation origin due to the carrier trapping by defects. The Hooge parameter of 10E-4 was extracted for this type of devices. The gate dependence of the noise spectral density suggests that the noise is dominated by the contributions from the ungated part of the device channel and by the contacts. The obtained results are important for graphene electronic applications

    Low-noise top-gate graphene transistors

    Full text link
    We report results of experimental investigation of the low-frequency noise in the top-gate graphene transistors. The back-gate graphene devices were modified via addition of the top gate separated by 20 nm of HfO2 from the single-layer graphene channels. The measurements revealed low flicker noise levels with the normalized noise spectral density close to 1/f (f is the frequency) and Hooge parameter below 2 x 10^-3. The analysis of the noise spectral density dependence on the top and bottom gate biases helped us to elucidate the noise sources in these devices and develop a strategy for the electronic noise reduction. The obtained results are important for all proposed graphene applications in electronics and sensors.Comment: 9 pages, 4 figure

    Mechanical Response of He- Implanted Amorphous SiOC/ Crystalline Fe Nanolaminates

    Get PDF
    This study investigates the microstructural evolution and mechanical response of sputter-deposited amorphous silicon oxycarbide (SiOC)/crystalline Fe nanolaminates, a single layer SiOC film, and a single layer Fe film subjected to ion implantation at room temperature to obtain a maximum He concentration of 5 at. %. X-ray diffraction and transmission electron microscopy indicated no evidence of implantation-induced phase transformation or layer breakdown in the nanolaminates. Implantation resulted in the formation of He bubbles and an increase in the average size of the Fe grains in the individual Fe layers of the nanolaminates and the single layer Fe film, but the bubble density and grain size were found to be smaller in the former. By reducing the thicknesses of individual layers in the nanolaminates, bubble density and grain size were further decreased. No He bubbles were observed in the SiOC layers of the nanolaminates and the single layer SiOC film. Nanoindentation and scanning probe microscopy revealed an increase in the hardness of both single layer SiOC and Fe films after implantation. For the nanolaminates, changes in hardness were found to depend on the thicknesses of the individual layers, where reducing the layer thickness to 14 nm resulted in mitigation of implantation-induced hardening

    IEEE Access Special Section Editorial: Biologically Inspired Image Processing Challenges and Future Directions

    Get PDF
    Human kind is exposed to large amounts of data. According to statistics, more than 80% of information received by humans comes from the visual system. Therefore, image information processing is not only an important research topic but also a challenging task. The unique information processing mechanism of the human visual system provides it with fast, accurate, and efficient image processing capabilities. At present, many advanced image analysis and processing techniques have been widely used in image communication, geographic information systems, medical image analysis, and virtual reality. However, there is still a large gap between these technologies and the human visual system. Therefore, building an image system research mechanism based on the biological vision system is an attractive but difficult target. Although it is a challenge, it can also be considered as an opportunity which utilizes biologically inspired ideas. Meanwhile, through the integration of neural biology, biological perception mechanisms, and computer science and mathematical science, related research can bridge biological vision and computer vision. Finally, the biologically inspired image analysis and processing system is expected to be built on the basis of further consideration of the learning mechanism of the human brain

    Perceptually Motivated Wavelet Packet Transform for Bioacoustic Signal Enhancement

    Get PDF
    A significant and often unavoidable problem in bioacoustic signal processing is the presence of background noise due to an adverse recording environment. This paper proposes a new bioacoustic signal enhancement technique which can be used on a wide range of species. The technique is based on a perceptually scaled wavelet packet decomposition using a species-specific Greenwood scale function. Spectral estimation techniques, similar to those used for human speech enhancement, are used for estimation of clean signal wavelet coefficients under an additive noise model. The new approach is compared to several other techniques, including basic bandpass filtering as well as classical speech enhancement methods such as spectral subtraction, Wiener filtering, and Ephraim–Malah filtering. Vocalizations recorded from several species are used for evaluation, including the ortolan bunting (Emberiza hortulana), rhesus monkey (Macaca mulatta), and humpback whale (Megaptera novaeanglia), with both additive white Gaussian noise and environment recording noise added across a range of signal-to-noise ratios (SNRs). Results, measured by both SNR and segmental SNR of the enhanced wave forms, indicate that the proposed method outperforms other approaches for a wide range of noise conditions

    Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security

    Get PDF
    Recently, a variant of proxy re-encryption, named conditional proxy re-encryption (C-PRE), has been introduced. Compared with traditional proxy re-encryption, C-PRE enables the delegator to implement fine-grained delegation of decryption rights, and thus is more useful in many applications. In this paper, based on a careful observation on the existing definitions and security notions for C-PRE, we reformalize more rigorous definition and security notions for C-PRE. We further propose a more efficient C-PRE scheme, and prove its chosenciphertext security under the decisional bilinear Diffie-Hellman (DBDH) assumption in the random oracle model. In addition, we point out that a recent C-PRE scheme fails to achieve the chosen-ciphertext security

    A Subject-Specific EMG-Driven Musculoskeletal Model for the Estimation of Moments in Ankle Plantar-Dorsiflexion Movement

    Get PDF
    In traditional rehabilitation process, ankle movement ability is only qualitatively estimated by its motion performance, however, its movement is actually achieved by the forces acting on the joints produced by muscles contraction. In this paper, the musculoskeletal model is introduced to provide a more physiologic method for quantitative muscle forces and muscle moments estimation during rehabilitation. This paper focuses on the modeling method of musculoskeletal model using electromyography (EMG) and angle signals for ankle plantar-dorsiflexion (P-DF) which is very important in gait rehabilitation and foot prosthesis control. Due to the skeletal morphology differences among people, a subject-specific geometry model is proposed to realize the estimation of muscle lengths and muscle contraction force arms. Based on the principle of forward and inverse dynamics, difference evolutionary (DE) algorithm is used to adjust individual parameters of the whole model, realizing subject-specific parameters optimization. Results from five healthy subjects show the inverse dynamics joint moments are well predicted with an average correlation coefficient of 94.21% and the normalized RMSE of 12.17%. The proposed model provides a good way to estimate muscle moments during movement tasks
    • …
    corecore