115,681 research outputs found

    The Behaviour of Finely Ground Bottom Ash in Portland Cement

    No full text
    The aim of this project was to assess the effects of finely ground MSWI bottom ash in Portland cement. Mortar mixes were prepared with 10% and 40% replacement of cement by ground IBA and then tested with regards to their material composition and engineering behaviour. IBA was found not to be inert, but showed some degree of reactivity. Replacement of cement with IBA was found to have no detrimental effects at low concentrations. This was not the case for 40% replacement, where cement replacement greatly affected strength, creep and drying shrinkage

    Evaluation of the EMC environment generated by a static var compensator

    Get PDF
    Describes an evaluation of the EMC environment generated by a static var compensator

    First-principles calculations of a high-pressure synthesized compound PtC

    Full text link
    First-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that the platinum carbide has a zinc-blende ground-state phase at zero pressure and the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt is determined to be 52GPa. Furthermore, our calculation shows the possibility that the experimentally synthesized PtC by Ono et al. under high pressure condition might undergo a transition from rock-salt structure to zinc-blende after the pressure quench to ambient condition.Comment: A revised versio

    The Effect of Co-Combusted Biomass-Coal Fly Ash on the Behaviour Portland Cement

    No full text
    This project has investigated the hydration behaviour of pfa-OPC blended cements, comparing conventional pfa with that obtained from co-firing of coal with biomass (palm kernel expeller). Calorimetry, thermal analysis and electron microscopy have been used to investigate the compositions and microstructures of the hydrated pastes. These have been used to explain the materials’ engineering properties (strength development and workability). The results showed that, in the short term, the behaviour of the co-fired material is comparable with that of conventional pfa, there being no discernable differences between the two systems

    Medium modifications of the nucleon-nucleon elastic cross section in neutron-rich intermediate energy HICs

    Get PDF
    Several observables of unbound nucleons which are to some extent sensitive to the medium modifications of nucleon-nucleon elastic cross sections in neutron-rich intermediate energy heavy ion collisions are investigated. The splitting effect of neutron and proton effective masses on cross sections is discussed. It is found that the transverse flow as a function of rapidity, the QzzQ_{zz} as a function of momentum, and the ratio of halfwidths of the transverse to that of longitudinal rapidity distribution Rt/lR_{t/l} are very sensitive to the medium modifications of the cross sections. The transverse momentum distribution of correlation functions of two-nucleons does not yield information on the in-medium cross section.Comment: 14 pages, 5 figure

    Out of plane effect on the superconductivity of Sr2-xBaxCuO3+y with Tc up to 98K

    Full text link
    A series of new Sr2-xBaxCuO3+y (0 x 0.6) superconductors were prepared using high-pressure and high-temperature synthesis. A Rietveld refinement based on powder x-ray diffraction confirms that the superconductors crystallize in the K2NiF4-type structure of a space group I4/mmm similar to that of La2CuO4 but with partially occupied apical oxygen sites. It is found that the superconducting transition temperature Tc of this Ba substituted Sr2CuO3+y superconductor with constant carrier doping level, i.e., constant d, is controlled not only by order/disorder of apical-O atoms but also by Ba content. Tcmax =98 K is achieved in the material with x=0.6 that reaches the record value of Tc among the single-layer copper oxide superconductors, and is higher than Tc=95K of Sr2CuO3+y with optimally ordered apical-O atoms. There is Sr-site disorder in Sr2-xBaxCuO3+y which might lead to a reduction of Tc. The result indicates that another effect surpasses the disorder effect that is related either to the increased in-plane Cu-O bond length or to elongated apical-O distance due to Ba substitution with larger cation size. The present experiment demonstrates that the optimization of local geometry out of the Cu-O plane can dramatically enhance Tc in the cuprate superconductors.Comment: 23 Pages, 1 Table, 5 Figure
    • …
    corecore