55,452 research outputs found

    Detection of Striped Superconductors Using Magnetic Field Modulated Josephson Effect

    Full text link
    In a very interesting recent Letter\cite{berg}, the authors suggested that a novel form of superconducting state is realized in La2x_{2-x}Bax_xCuO4_4 with xx close to 1/8. This suggestion was based on experiments\cite{li} on this compound which found predominantly two-dimensional (2D) characters of the superconducting state, with extremely weak interplane coupling. Later this specific form of superconducting state was termed striped superconductors\cite{berg08}. The purpose of this note is to point out that the suggested form\cite{berg} of the superconducting order parameter can be detected directly using magnetic field modulated Josephson effect.Comment: Expanded version as appeared in prin

    Micromachined membrane particle filters

    Get PDF
    We report here several particle membrane filters (8 x 8 mm^2) with circular, hexagonal and rectangular through holes. By varying hole dimensions from 6 to 12 pm, opening factors from 4 to 45 % are achieved. In order to improve the filter robustness, a composite silicon nitride/Parylene membrane technology is developed. More importantly, fluid dynamic performance of the filters is also studied by both experiments and numerical simulations. It is found that the gaseous flow through the filters depends strongly on opening factors, and the measured pressure drops are much lower than that from numerical simulation using the Navier-Stokes equation. Interestingly, surface velocity slip can only account for a minor part of the discrepancy. This suggests that a very interesting topic for micro fluid mechanics research is identified

    Parallel Computing on a PC Cluster

    Get PDF
    The tremendous advance in computer technology in the past decade has made it possible to achieve the performance of a supercomputer on a very small budget. We have built a multi-CPU cluster of Pentium PC capable of parallel computations using the Message Passing Interface (MPI). We will discuss the configuration, performance, and application of the cluster to our work in physics.Comment: 3 pages, uses Latex and aipproc.cl

    Disorder-induced melting of the charge order in thin films of Pr0.5Ca0.5MnO3

    Full text link
    We have studied the magnetic-field-induced melting of the charge order in thin films of Pr0.5Ca0.5MnO3 (PCMO) films on SrTiO3 (STO) by X-ray diffraction, magnetization and transport measurement. At small thickness (25 nm) the films are under tensile strain and the low-temperature melting fields are of the order of 20 T or more, comparable to the bulk value. With increasing film thickness the strain relaxes, which leads to a strong decrease of the melting fields. For a film of 150 nm, with in-plane and out-of-plane lattice parameters closer to the bulk value, the melting field has reduced to 4 T at 50 K, with a strong increase in the hysteretic behavior and also an increasing fraction of ferromagnetic material. Strain relaxation by growth on a template of YBa2Cu3O(7-delta) or by post-annealing yields similar results with an even stronger reduction of the melting field. Apparently, strained films behave bulk-like. Relaxation leads to increasing suppression of the CO state, presumably due to atomic scale disorder produced by the relaxation process.Comment: 7 pages, 4 fig

    Pattern formation of indirect excitons in coupled quantum wells

    Full text link
    Using a nonlinear Schr\"odinger equation including short-range two-body attraction and three-body repulsion, we investigate the spatial distribution of indirect excitons in semiconductor coupled quantum wells. The results obtained can interpret the experimental phenomenon that annular exciton cloud first contracts then expands when the number of confined excitons is increased in impurity potential well, as observed by Lai \emph{et al.} [Lai etal.et al., Science \textbf{303}, 503 (2004)]. In particular, the model reconciles the patterns of exciton rings reported by Butov \emph{et al.} [Butov etal.et al., Nature \textbf{418}, 751 (2002)]. At higher densities, the model predicts much richer patterns, which could be tested by future experiments.Comment: 5 Revtex4 pages, 3 figure

    Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Get PDF
    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor. This insight could have profound implications for SRM and flexible inhibitor designs for current and future launch vehicles including SLS

    Trans-phonon effects in ultrafast nano-devices

    Full text link
    We report a novel phenomenon in carbon nanotube (CNT) based devices, the transphonon effects, which resemble the transonic effects in aerodynamics. It is caused by dissipative resonance of nanotube phonons similar to the radial breathing mode, and subsequent drastic surge of the dragging force on the sliding tube, and multiple phonon barriers are encountered as the intertube sliding velocity reaches critical values. It is found that the transphonon effects can be tuned by applying geometric constraints or varying chirality combinations of the nanotubes

    Cosmic axion thermalization

    Full text link
    Axions differ from the other cold dark matter candidates in that they form a degenerate Bose gas. It is shown that their huge quantum degeneracy and large correlation length cause cold dark matter axions to thermalize through gravitational self-interactions when the photon temperature reaches approximately 500 eV. When they thermalize, the axions form a Bose-Einstein condensate. Their thermalization occurs in a regime, herein called the `condensed regime', where the Boltzmann equation is not valid because the energy dispersion of the particles is smaller than their interaction rate. We derive analytical expressions for the thermalization rate of particles in the condensed regime, and check the validity of these expressions by numerical simulation of a toy model. We revisit axion cosmology in light of axion Bose-Einstein condensation. It is shown that axions are indistinguishable from ordinary cold dark matter on all scales of observational interest, except when they thermalize or rethermalize. The rethermalization of axions that are about to fall in a galactic potential well causes them to acquire net overall rotation as they go to the lowest energy state consistent with the total angular momentum they acquired by tidal torquing. This phenomenon explains the occurrence of caustic rings of dark matter in galactic halos. We find that photons may reach thermal contact with axions and investigate the implications of this possibility for the measurements of cosmological parameters.Comment: 38 pages, 1 figur
    corecore