27,645 research outputs found

    On the nonsquare constants of L(Φ)[0,+1)

    Get PDF
    Let L(Φ)[0,+1) be the Orlicz function space generated by N−function Φ(u) with Luxemburg norm. We show the exact nonsquare constant of it when the right derivative φ(t) of Φ(u) is convex or concave.Let L(Φ)[0,+1) be the Orlicz function space generated by N−function Φ(u) with Luxemburg norm. We show the exact nonsquare constant of it when the right derivative φ(t) of Φ(u) is convex or concave

    Joint effect of the western and eastern Pacific warm pools on ENSO cycle

    No full text
    International audienceThe zonal displacement of the western Pacific warm pool (WPWP) and the meridional displacement of the eastern Pacific warm pool (EPWP) and their responses to wind anomalies over the tropical Pacific were investigated. Joint effect of the WPWP and EPWP on ENSO was examined based on a joint effect index, which is a combination of the standardized anomaly time series of the eastern edge of the WPWP and the southern edge of the EPWP. Results show that both WPWP and EPWP are major providers of warm water in the eastern equatorial Pacific. The anomalous eastward extension of the WPWP and abnormal southward extension of the EPWP can supply a large amount of warm water into Nino3 region of the north equator, result in dramatic local SST increase, and trigger El Niño. To the contrary, as scope of the WPWP retreats westward and the EPWP retreats northward, a La Niña will outburst. One cannot separate apart the roles played by the WPWP and EPWP on ENSO, and the joint effect of both warm pools must be considered. A joint index of 1.6 means a new El Niño event is likely to happen

    Steady Bell state generation via magnon-photon coupling

    Full text link
    We show that parity-time (PT\mathcal{PT}) symmetry can be spontaneously broken in the recently reported energy level attraction of magnons and cavity photons. In the PT\mathcal{PT}-broken phase, magnon and photon form a high-fidelity Bell state with maximum entanglement. This entanglement is steady and robust against the perturbation of environment, in contrast to the general wisdom that expects instability of the hybridized state when the symmetry is broken. This anomaly is further understood by the compete of non-Hermitian evolution and particle number conservation of the hybridized system. As a comparison, neither PT\mathcal{PT}-symmetry broken nor steady magnon-photon entanglement is observed inside the normal level repulsion case. Our results may open a novel window to utilize magnon-photon entanglement as a resource for quantum technologies.Comment: 5 pages, 4 figure

    Quantum secret sharing between multiparty and multiparty with four states

    Full text link
    An protocol of quantum secret sharing between multiparty and multiparty with four states is presented. We show that this protocol can make the Trojan horse attack with a multi-photon signal, the fake-signal attack with EPR pairs, the attack with single photons, and the attack with invisible photons to be nullification. In addition, we also give the upper bounds of the average success probabilities for dishonest agent eavesdropping encryption using the fake-signal attack with any two-particle entangled states.Comment: 7 page

    Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells

    Get PDF
    High-grade serous ovarian cancer is an aggressive form of epithelial ovarian cancer (EOC), and accounts for the majority of deaths due to EOC. The critical cellular processes and underlying molecular mechanisms that define this malignancy remain poorly understood. Using a syngeneic murine model, we investigated the changes that accompanied the progression to increased aggressiveness induced by in vivo passage of mouse EOC cells. We found that enhanced anoikis resistance was a key cellular process associated with greater aggressiveness and tumorigenicity in vivo. Biochemical studies revealed that the enhanced anoikis resistance was associated with the activation of the Src/Akt/Erk signaling pathway. A higher rate of metabolism and autophagy were also associated with increased anoikis resistance. Blocking these pathways with specific inhibitors and/or genetic modifications significantly increased anoikis in vitro and inhibited tumor development in vivo. In addition, we demonstrated that similar signaling pathways were also involved in a human EOC cell line model. Collectively, our data suggest that anoikis resistance represents a critical and a distinguishing feature underlying the aggressiveness of ovarian cancer cells

    Extended radio emission after the soft X-ray maximum of the NOAA 9077 AR solar flare on July 10, 2000

    Get PDF
    An extended radio emission after a soft X-ray (SXR) maximum was detected in the active region NOAA 9077 by several observatories for the solar flare after 21:42 UT on July 10, 2000. Also some radio fine structures before the enduring radio emission were observed with the 1.0-2.0 GHz spectrometer of Beijing Astronomical Observatory (BAO) in the same time. We apply a shear-driven quadrupolar reconnection model (SQR) to analyze the fine structures and the related radio emission. We find that the footpoint shear motion of the flux loop is accompanied with the emerging up of the loop during the reconnection process. We tentatively interpret the extended radio emission as the nonthermal radiation caused by a new reconnection process between emerging flux loop and pre-existing overarching loop after the soft X-ray maximum

    Microlensing of Sub-parsec Massive Binary Black Holes in Lensed QSOs: Light Curves and Size-Wavelength Relation

    Full text link
    Sub-parsec binary massive black holes (BBHs) are long anticipated to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circum-binary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circum-binary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii of the emission region at different wavelengths from mock light curves and find that the obtained half-light radius vs. wavelength relations of BBH QSO systems can be much flatter than those of single MBH QSO systems at a wavelength range determined by the BBH parameters, such as the total mass, mass ratio, separation, accretion rates, etc. The difference is primarily due to the existence of the gap. Such unique features on the light curves and half-light radius-wavelength relations of BBH QSO systems can be used to select and probe sub-parsec BBHs in a large number of lensed QSOs to be discovered by current and future surveys, including the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), the Large Synoptic Survey telescope (LSST) and Euclid.Comment: 18 pages, 17 figures, accepted for publication in the Astrophysical Journa
    corecore