10,513 research outputs found

    Strongly Regular Graphs with Parameters (4m4, 2m4 + m2, m4 + m2, m4 + m2) Exist for All m>1

    Get PDF
    Using results on Hadamard difference sets, we construct regular graphical Hadamard matrices of negative type of order 4m4 for every positive integer m. If m > 1, such a Hadamard matrix is equivalent to a strongly regular graph with parameters (4m4, 2m4 +m2,m4 +m2,m4 +m2). Strongly regular graphs with these parameters have been called max energy graphs, because they have maximal energy (as defined by Gutman) among all graphs on 4m4 vertices. For odd m>3 the strongly regular graphs seem to be new.Cayley graph;difference set;energy of a graph;Hadamard matrix;regular Hadamard matrix;strongly regular graph;Seidel switching.

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    Comment on "Time-Dependent Density-Matrix Renormalization Group: A Systematic Method for the Study of Quantum Many-Body Out-of- Equilibrium Systems"

    Full text link
    In a recent Letter [Phys. Rev. Lett. 88, 256403(2002), cond-mat/0109158] Cazalilla and Marston proposed a time-dependent density- matrix renormalization group (TdDMRG) algorithm for the accurate evaluation of out-of-equilibrium properties of quantum many-body systems. For a point contact junction between two Luttinger liquids, a current oscillation develops after initial transient in the insulating regime. Here we would like to point out that (a) the observed oscillation is an artifact of the method; (b) the TdDMRG can be significantly improved by incorporating the non-equilibrium evolution of the goundstate into the density matrix.Comment: 1 page, 2 figure

    Co-community Structure in Time-varying Networks

    Full text link
    In this report, we introduce the concept of co-community structure in time-varying networks. We propose a novel optimization algorithm to rapidly detect co-community structure in these networks. Both theoretical and numerical results show that the proposed method not only can resolve detailed co-communities, but also can effectively identify the dynamical phenomena in these networks.Comment: 5 pages, 6 figure

    Exotic mesons from quantum chromodynamics with improved gluon and quark actions on the anisotropic lattice

    Full text link
    Hybrid (exotic) mesons, which are important predictions of quantum chromodynamics (QCD), are states of quarks and anti-quarks bound by excited gluons. First principle lattice study of such states would help us understand the role of ``dynamical'' color in low energy QCD and provide valuable information for experimental search for these new particles. In this paper, we apply both improved gluon and quark actions to the hybrid mesons, which might be much more efficient than the previous works in reducing lattice spacing error and finite volume effect. Quenched simulations were done at β=2.6\beta=2.6 and on a ξ=3\xi=3 anisotropic 123×3612^3\times36 lattice using our PC cluster. We obtain 2013±26±712013 \pm 26 \pm 71 MeV for the mass of the 1+1^{-+} hybrid meson qˉqg{\bar q}qg in the light quark sector, and 4369±37±994369 \pm 37 \pm 99Mev in the charm quark sector; the mass splitting between the 1+1^{-+} hybrid meson cˉcg{\bar c}c g in the charm quark sector and the spin averaged S-wave charmonium mass is estimated to be 1302±37±991302 \pm 37 \pm 99 MeV. As a byproduct, we obtain 1438±32±571438 \pm 32 \pm 57 MeV for the mass of a P-wave 1++1^{++} uˉu{\bar u}u or dˉd{\bar d}d meson and 1499±28±651499 \pm 28 \pm 65 MeV for the mass of a P-wave 1++1^{++} sˉs{\bar s}s meson, which are comparable to their experimental value 1426 MeV for the f1(1420)f_1(1420) meson. The first error is statistical, and the second one is systematical. The mixing of the hybrid meson with a four quark state is also discussed.Comment: 12 pages, 3 figures. Published versio

    Top Quark Rare Decays via Loop-Induced FCNC Interactions in Extended Mirror Fermion Model

    Full text link
    Flavor changing neutral current (FCNC) interactions for a top quark tt decays into XqXq with XX represents a neutral gauge or Higgs boson, and qq a up- or charm-quark are highly suppressed in the Standard Model (SM) due to the Glashow-Iliopoulos-Miami mechanism. Whilst current limits on the branching ratios of these processes have been established at the order of 10410^{-4} from the Large Hadron Collider experiments, SM predictions are at least nine orders of magnitude below. In this work, we study some of these FCNC processes in the context of an extended mirror fermion model, originally proposed to implement the electroweak scale seesaw mechanism for non-sterile right-handed neutrinos. We show that one can probe the process tZct \to Zc for a wide range of parameter space with branching ratios varying from 10610^{-6} to 10810^{-8}, comparable with various new physics models including the general two Higgs doublet model with or without flavor violations at tree level, minimal supersymmetric standard model with or without RR-parity, and extra dimension model.Comment: 30 pages, 8 figures, 2 tables and 1 appendix. Version to appear in NP

    A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics

    Get PDF
    A new approach to upscaling two-dimensional fracture network models is proposed for preserving geostatistical and geomechanical characteristics of a smaller-scale “source” fracture pattern. First, the scaling properties of an outcrop system are examined in terms of spatial organization, lengths, connectivity, and normal/shear displacements using fractal geometry and power law relations. The fracture pattern is observed to be nonfractal with the fractal dimension D ≈ 2, while its length distribution tends to follow a power law with the exponent 2 < a < 3. To introduce a realistic distribution of fracture aperture and shear displacement, a geomechanical model using the combined finite-discrete element method captures the response of a fractured rock sample with a domain size L = 2 m under in situ stresses. Next, a novel scheme accommodating discrete-time random walks in recursive self-referencing lattices is developed to nucleate and propagate fractures together with their stress- and scale-dependent attributes into larger domains of up to 54 m × 54 m. The advantages of this approach include preserving the nonplanarity of natural cracks, capturing the existence of long fractures, retaining the realism of variable apertures, and respecting the stress dependency of displacement-length correlations. Hydraulic behavior of multiscale growth realizations is modeled by single-phase flow simulation, where distinct permeability scaling trends are observed for different geomechanical scenarios. A transition zone is identified where flow structure shifts from extremely channeled to distributed as the network scale increases. The results of this paper have implications for upscaling network characteristics for reservoir simulation
    corecore