10,396 research outputs found
Method of forming a multiple layer dielectric and a hot film sensor therewith
The invention is a method of forming a multiple layer dielectric for use in a hot-film laminar separation sensor. The multiple layer dielectric substrate is formed by depositing a first layer of a thermoelastic polymer such as on an electrically conductive substrate such as the metal surface of a model to be tested under cryogenic conditions and high Reynolds numbers. Next, a second dielectric layer of fused silica is formed on the first dielectric layer of thermoplastic polymer. A resistive metal film is deposited on selected areas of the multiple layer dielectric substrate to form one or more hot-film sensor elements to which aluminum electrical circuits deposited upon the multiple layered dielectric substrate are connected
Performance analysis of Multiple-RIS-Based NOMA systems
In this paper, we present a study on a model of multirelay radio network system that utilizes reconfigurable intelligent surfaces (RISs). We investigate the use of nonorthogonal multiple access (NOMA) combined with cooperative RIS systems, using partial RIS selection (PRISs). Specifically, the RISs act as relays to forward data from the base station to the two users. The focus of this paper is to analyze the outage probabilities and throughput for the two users. Based on the results, we examine how PRISs affect the performance of the proposed NOMA scheme. The derived asymptotic expressions show that the proposed model can improve user fairness. Finally, we compare the analysis results with the simulation results and find good agreement
Adjoint-based predictor-corrector sequential convex programming for parametric nonlinear optimization
This paper proposes an algorithmic framework for solving parametric
optimization problems which we call adjoint-based predictor-corrector
sequential convex programming. After presenting the algorithm, we prove a
contraction estimate that guarantees the tracking performance of the algorithm.
Two variants of this algorithm are investigated. The first one can be used to
solve nonlinear programming problems while the second variant is aimed to treat
online parametric nonlinear programming problems. The local convergence of
these variants is proved. An application to a large-scale benchmark problem
that originates from nonlinear model predictive control of a hydro power plant
is implemented to examine the performance of the algorithms.Comment: This manuscript consists of 25 pages and 7 figure
Rateless codes-based secure communication employing transmit antenna selection and harvest-to-jam under joint effect of interference and hardware impairments
In this paper, we propose a rateless codes-based communication protocol to provide security for wireless systems. In the proposed protocol, a source uses the transmit antenna selection (TAS) technique to transmit Fountain-encoded packets to a destination in presence of an eavesdropper. Moreover, a cooperative jammer node harvests energy from radio frequency (RF) signals of the source and the interference sources to generate jamming noises on the eavesdropper. The data transmission terminates as soon as the destination can receive a sufficient number of the encoded packets for decoding the original data of the source. To obtain secure communication, the destination must receive sufficient encoded packets before the eavesdropper. The combination of the TAS and harvest-to-jam techniques obtains the security and efficient energy via reducing the number of the data transmission, increasing the quality of the data channel, decreasing the quality of the eavesdropping channel, and supporting the energy for the jammer. The main contribution of this paper is to derive exact closed-form expressions of outage probability (OP), probability of successful and secure communication (SS), intercept probability (IP) and average number of time slots used by the source over Rayleigh fading channel under the joint impact of co-channel interference and hardware impairments. Then, Monte Carlo simulations are presented to verify the theoretical results.Web of Science217art. no. 70
SWIPT-based cooperative NOMA for two-way relay communications: PSR versus TSR
Spectrum and energy efficiency with simultaneous wireless information and power transfer (SWIPT) to prolong the lifetime of power-constrained wireless devices in cooperative relaying nonorthogonal multiple access (CR-NOMA) has received great attention in the last decade. This paper investigates a two-way relay channel in a CR-NOMA system where two users exchange data with the assistance of a relay. Power-splitting relaying (PSR) and time-switching relaying (TSR) protocols are employed at the relay to harvest RF energy and process information from two users. We firstly derive the exact expressions of outage probability (OP) and system throughput (ST). The impacts of signal quality, energy coefficients, the distance of the nodes, and the data rate of two users on these performance metrics are then evaluated through several system settings to reflect practical network scenarios. It is shown that the OP and ST of the TSR are superior to that of the PSR protocol. Specifically, numerical results indicate that a higher throughput of up to 8% can be achieved with the TSR when compared to the PSR. It is further revealed that the OP and ST of the PSR are strongly affected by energy harvesting (EH) coefficients, while the performance obtained with the TSR is nearly independent of the EH capability at the relay
- …