18,001 research outputs found
Solving Dirac equations on a 3D lattice with inverse Hamiltonian and spectral methods
A new method to solve the Dirac equation on a 3D lattice is proposed, in
which the variational collapse problem is avoided by the inverse Hamiltonian
method and the fermion doubling problem is avoided by performing spatial
derivatives in momentum space with the help of the discrete Fourier transform,
i.e., the spectral method. This method is demonstrated in solving the Dirac
equation for a given spherical potential in 3D lattice space. In comparison
with the results obtained by the shooting method, the differences in single
particle energy are smaller than ~MeV, and the densities are almost
identical, which demonstrates the high accuracy of the present method. The
results obtained by applying this method without any modification to solve the
Dirac equations for an axial deformed, non-axial deformed, and octupole
deformed potential are provided and discussed.Comment: 18 pages, 6 figure
The -log-convexity of Domb's polynomials
In this paper, we prove the -log-convexity of Domb's polynomials, which
was conjectured by Sun in the study of Ramanujan-Sato type series for powers of
. As a result, we obtain the log-convexity of Domb's numbers. Our proof is
based on the -log-convexity of Narayana polynomials of type and a
criterion for determining -log-convexity of self-reciprocal polynomials.Comment: arXiv admin note: substantial text overlap with arXiv:1308.273
On the -log-convexity conjecture of Sun
In his study of Ramanujan-Sato type series for , Sun introduced a
sequence of polynomials as given by
and he conjectured that the polynomials are -log-convex. By
imitating a result of Liu and Wang on generating new -log-convex sequences
of polynomials from old ones, we obtain a sufficient condition for determining
the -log-convexity of self-reciprocal polynomials. Based on this criterion,
we then give an affirmative answer to Sun's conjecture
Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications
The South China Sea (SCS) experienced three episodes of seafloor spreading and left three fossil spreading centers presently located at 18°N, 17°N and 15.5°N. Spreading ceased at these three locations during magnetic anomaly 10, 8, and 5c, respectively. Daimao Seamount (16.6. Ma) was formed 10. my after the cessation of the 17°N spreading center. Volcaniclastic rocks and shallow-water carbonate facies near the summit of Daimao Seamount provide key information on the seamount's geologic history. New major and trace element and Sr-Nd-Pb isotopic compositions of basaltic breccia clasts in the volcaniclastics suggest that Daimao and other SCS seamounts have typical ocean island basalt-like composition and possess a 'Dupal' isotopic signature. Our new analyses, combined with available data, indicate that the basaltic foundation of Daimao Seamount was formed through subaqueous explosive volcanic eruptions at 16.6. Ma. The seamount subsided rapidly (>. 0.12. mm/y) at first, allowing the deposition of shallow-water, coral-bearing carbonates around its summit and, then, at a slower rate (<. 0.12. mm/y). We propose that the parental magmas of SCS seamount lavas originated from the Hainan mantle plume. In contrast, lavas from contemporaneous seamounts in other marginal basins in the western Pacific are subduction-related
Multiple Superconducting Gaps, Anisotropic Spin Fluctuations and Spin-Orbit Coupling in Iron-Pnictides
This article reviews the NMR and NQR studies on iron-based high-temperature
superconductors by the IOP/Okayama group. It was found that the electron pairs
in the superconducting state are in the spin-singlet state with multiple
fully-opened energy gaps. The antiferromagnetic spin fluctuations in the normal
state are found to be closely correlated with the superconductivity. Also the
antiferromagnetic spin fluctuations are anisotropic in the spin space, which is
different from the case in copper oxide superconductors. This anisotropy
originates from the spin-orbit coupling and is an important reflection of the
multiple-bands nature of this new class of superconductors.Comment: 20 pages, 16 figure
- …