27 research outputs found

    Diagrammes de puissance restreint sur le GPU

    Get PDF
    International audienceWe propose a method to simultaneously decompose a 3D object into power diagram cells and to integrate given functions in each of the obtained simple regions. We offer a novel, highly parallel algorithm that lends itself to an efficient GPU implementation. It is optimized for algorithms that need to compute many decompositions, for instance, centroidal Voronoi tesselation algorithms and incompressible fluid dynamics simulations. We propose an efficient solution that directly evaluates the integrals over every cell without computing the power diagram explicitly and without intersecting it with a tetrahedralization of the domain. Most computations are performed on the fly, without storing the power diagram. We manipulate a triangulation of the boundary of the domain (instead of tetrahedralizing the domain) to speed up the process. Moreover, the cells are treated independently one from another, making it possible to trivially scale up on a parallel architecture. Despite recent Voronoi diagram generation methods optimized for the GPU, computing integrals over restricted power diagrams still poses significant challenges; the restriction to a complex simulation domain is difficult and likely to be slow. It is not trivial to determine when a cell of a power diagram is completely computed, and the resulting integrals (e.g. the weighted Laplacian operator matrix) do not fit into fast (shared) GPU memory. We address all these issues and boost the performance of the state-of-the-art algorithms by a factor 2 to 3 for (unrestricted) Voronoi diagrams and a ×50 speed-up with respect to CPU implementations for restricted power diagrams. An essential ingredient to achieve this is our new scheduling strategy that allows us to treat each Voronoi/power diagram cell with optimal settings and to benefit from the fast memory

    Shape matching via quotient spaces

    No full text
    We introduce a novel method for non-rigid shape matching, designed to address the symmetric ambiguity problem present when matching shapes with intrinsic symmetries. Unlike the majority of existing methods which try to overcome this ambiguity by sampling a set of landmark correspondences, we address this problem directly by performing shape matching in an appropriate quotient space, where the symmetry has been identified and factored out. This allows us to both simplify the shape matching problem by matching between subspaces, and to return multiple solutions with equally good dense correspondences. Remarkably, both symmetry detection and shape matching are done without establishing any landmark correspondences between either points or parts of the shapes. This allows us to avoid an expensive combinatorial search present in most intrinsic symmetry detection and shape matching methods. We compare our technique with state-of-the-art methods and show that superior performance can be achieved both when the symmetry on each shape is known and when it needs to be estimated. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd

    High-contrast computational caustic design

    No full text

    Voronoi-based geometry estimator for 3D digital surfaces

    Get PDF
    14 pagesWe propose a robust estimator of geometric quantities such as normals, curvature directions and sharp features for 3D digital surfaces. This estimator only depends on the digitisation gridstep and is defined using a digital version of the Voronoi Covariance Measure, which exploits the robust geometric information contained in the Voronoi cells. It has been proved that the Voronoi Covariance Measure is resilient to Hausdorff noise. Our main theorem explicits the conditions under which this estimator is multigrid convergent for digital data. Moreover, we determine what are the parameters which maximise the convergence speed of this estimator, when the normal vector is sought. Numerical experiments show that the digital VCM estimator reliably estimates normals, curvature directions and sharp features of 3D noisy digital shapes

    A Fast Multi-Layer Approximation to Semi-Discrete Optimal Transport

    Get PDF
    International audienceThe optimal transport (OT) framework has been largely used in inverse imaging and computer vision problems, as an interesting way to incorporate statistical constraints or priors. In recent years, OT has also been used in machine learning, mostly as a metric to compare probability distributions. This work addresses the semi-discrete OT problem where a continuous source distribution is matched to a discrete target distribution. We introduce a fast stochastic algorithm to approximate such a semi-discrete OT problem using a hierarchical multi-layer transport plan. This method allows for tractable computation in high-dimensional case and for large point-clouds, both during training and synthesis time. Experiments demonstrate its numerical advantage over multi-scale (or multi-level) methods. Applications to fast exemplar-based texture synthesis based on patch matching with two layers, also show stunning improvements over previous single layer approaches. This shallow model achieves comparable results with state-of-the-art deep learning methods, while being very compact, faster to train, and using a single image during training instead of a large dataset
    corecore