2,411 research outputs found

    Infrared scaling solutions beyond the Landau gauge: The maximally Abelian gauge and Abelian infrared dominance

    Full text link
    Functional equations like exact renormalization group and Dyson-Schwinger equations have contributed to a better understanding of non-perturbative phenomena in quantum field theories in terms of the underlying Green functions. In Yang-Mills theory especially the Landau gauge has been used, as it is the most accessible gauge for these methods. The growing understanding obtained in this gauge allows to proceed to other gauges in order to obtain more information about the relation of different realizations of the confinement mechanism. In the maximally Abelian gauge first results are very encouraging as a variant of Abelian infrared dominance is found: The Abelian part of the gauge field propagator is enhanced at low momenta and thereby dominates the dynamics in the infrared. Its role is therefore similar to that of the ghost propagator in the Landau gauge, where one denotes the corresponding phenomenon as ghost dominance. Also the ambiguity of two different types of solutions (decoupling and scaling) exists in both gauges. Here we present how the two solutions are related in the maximally Abelian gauge. The intricacy of the system of functional equations in this gauge required the development of some new tools and methods as, for example, the automated derivation of the equations by the program DoFun. We also present results for linear covariant and ghost anti-ghost symmetric gauges.Comment: 10 pages, 2 figures, Proceedings of The Many faces of QCD, Nov. 1-5 2010, Ghent, Belgiu

    Lower dimensional Yang-Mills theory as a laboratory to study the infrared regime

    Get PDF
    Lattice studies of the infrared regime of gauge theories are complicated by the required extensive limits, the performed gauge fixing and the demand for high statistics. Using a general power counting scheme for the infrared limit of Landau gauge SU(N) Yang-Mills theory in arbitrary dimensions we show that the infrared behavior of Greens functions is both qualitatively and quantitatively similar in two, three and four spacetime dimensions. Therefore, lower dimensional lattice simulations can serve as a simplified laboratory to analyze the presently applied approximations and to obtain first results for higher correlation functions.Comment: 7 pages, 6 figures; talk presented at Lattice 200

    Anomalous Rashba spin-orbit interaction in InAs/GaSb quantum wells

    Full text link
    We investigate theoretically the Rashba spin-orbit interaction in InAs/GaSb quantum wells(QWs). We find that the Rashba spin-splitting (RSS) depends sensitively on the thickness of the InAs layer. The RSS exhibits nonlinear behavior for narrow InAs/GaSb QWs and the oscillating feature for wide InAs/GaSb QWs. The nonlinear and oscillating behaviors arise from the weakened and enhanced interband coupling. The RSS also show asymmetric features respect to the direction of the external electric field.Comment: 3 pages, 4 figures. Appl. Phys. Lett. (in press

    Improved three-dimensional color-gradient lattice Boltzmann model for immiscible multiphase flows

    Get PDF
    In this paper, an improved three-dimensional color-gradient lattice Boltzmann (LB) model is proposed for simulating immiscible multiphase flows. Compared with the previous three-dimensional color-gradient LB models, which suffer from the lack of Galilean invariance and considerable numerical errors in many cases owing to the error terms in the recovered macroscopic equations, the present model eliminates the error terms and therefore improves the numerical accuracy and enhances the Galilean invariance. To validate the proposed model, numerical simulation are performed. First, the test of a moving droplet in a uniform flow field is employed to verify the Galilean invariance of the improved model. Subsequently, numerical simulations are carried out for the layered two-phase flow and three-dimensional Rayleigh-Taylor instability. It is shown that, using the improved model, the numerical accuracy can be significantly improved in comparison with the color-gradient LB model without the improvements. Finally, the capability of the improved color-gradient LB model for simulating dynamic multiphase flows at a relatively large density ratio is demonstrated via the simulation of droplet impact on a solid surface.Comment: 9 Figure

    Microstrip antenna array with parasitic elements

    Get PDF
    Discussed is the design of a large microstrip antenna array in terms of subarrays consisting of one fed patch and several parasitic patches. The potential advantages of this design are discussed. Theoretical radiation patterns of a subarray in the configuration of a cross are presented
    • …
    corecore