2,308 research outputs found

    Radical anterior decompression and fusion for cervical spondylotic myelopathy

    Get PDF
    Sixty-seven patients with cervical spondylotic myelopathy were treated by radical anterior decompression and anterior spinal fusion. Of the 51 patients followed post-operatively for an average of 4.02 years, 34 obtained complete or partial relief, nine were unchanged and two deteriorated. Early complete anterior decompression and spinal fusion led to the most favourable results.published_or_final_versio

    On the Necessary Memory to Compute the Plurality in Multi-Agent Systems

    Get PDF
    We consider the Relative-Majority Problem (also known as Plurality), in which, given a multi-agent system where each agent is initially provided an input value out of a set of kk possible ones, each agent is required to eventually compute the input value with the highest frequency in the initial configuration. We consider the problem in the general Population Protocols model in which, given an underlying undirected connected graph whose nodes represent the agents, edges are selected by a globally fair scheduler. The state complexity that is required for solving the Plurality Problem (i.e., the minimum number of memory states that each agent needs to have in order to solve the problem), has been a long-standing open problem. The best protocol so far for the general multi-valued case requires polynomial memory: Salehkaleybar et al. (2015) devised a protocol that solves the problem by employing O(k2k)O(k 2^k) states per agent, and they conjectured their upper bound to be optimal. On the other hand, under the strong assumption that agents initially agree on a total ordering of the initial input values, Gasieniec et al. (2017), provided an elegant logarithmic-memory plurality protocol. In this work, we refute Salehkaleybar et al.'s conjecture, by providing a plurality protocol which employs O(k11)O(k^{11}) states per agent. Central to our result is an ordering protocol which allows to leverage on the plurality protocol by Gasieniec et al., of independent interest. We also provide a Ω(k2)\Omega(k^2)-state lower bound on the necessary memory to solve the problem, proving that the Plurality Problem cannot be solved within the mere memory necessary to encode the output.Comment: 14 pages, accepted at CIAC 201

    Policy, toxicology and physicochemical considerations on the inhalation of high concentrations of food flavour

    Get PDF
    Food flavour ingredients are required by law to obtain prior approval from regulatory bodies, such as the U.S. Food and Drug Administration (FDA) or the European Food Safety Authority (EFSA) in terms of toxicological data and intended use levels. However, there are no regulations for labelling the type and concentration of flavour additives on the product, primarily due to their low concentration in food and generally recognised as safe (GRAS) status determined by the flavour and extract manufacturers’ association (FEMA). Their status for use in e-cigarettes and other vaping products challenges these fundamental assumptions, because their concentration can be over ten-thousand times higher than in food, and the method of administration is through inhalation, which is currently not evaluated by the FEMA expert panel. This work provides a review of some common flavour ingredients used in food and vaping products, their product concentrations, inhalation toxicity and aroma interactions reported with different biological substrates. We have identified several studies, which suggest that the high concentrations of flavour through inhalation may pose a serious health threat, especially in terms of their cytotoxicity. As a result of the wide range of possible protein-aroma interactions reported in our diet and metabolism, including links to several non-communicable diseases, we suggest that it is instrumental to update current flavour- labelling regulations, and support new strategies of understanding the effects of flavour uptake on the digestive and respiratory systems, in order to prevent the onset of future non-communicable diseases. © 2020, The Author(s)

    Irradiation of Materials with Short, Intense Ion pulses at NDCX-II

    Full text link
    We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0.7 J/cm^2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance.Comment: 15 pages, 7 figures. revised manuscript submitted to Laser and Particle Beam

    Compensating Commitments: The Law and Economics of Commitment Bonds That Compensate for the Possibility of Forfeiture

    Get PDF
    This Article introduces compensating commitment bonds, which make it more affordable for a government, entity, or individual to commit to some course of action. These bonds, like traditional government or corporate bonds, can generate revenue for committing parties. A bond seller makes a commitment and promises to pay a forfeit if the seller fails to meet the bond conditions. The bond buyer pays the seller to be contractually designated as the recipient of any amounts the bond seller forfeits. This approach has potential application in a range of legal situations. Governments and other parties may use such bonds to facilitate commitments to principles from which they later may face temptation to deviate. Such bonds also can facilitate legislative compromise or the settlement of private legal disputes. The Article identifies a variety of incentive-equivalent commitment bond structures as well as the circumstances under which a particular implementation is likely to be most effective. It also explores hurdles to the use of such bonds, including the concerns that the courts might find a legislature’s use of such bonds to entrench its preferences unconstitutional and that a legislature might issue such bonds but cancel them after failing to maintain a commitment

    A perspective from extinct radionuclides on a Young Stellar Object: The Sun and its accretion disk

    Full text link
    Meteorites, which are remnants of solar system formation, provide a direct glimpse into the dynamics and evolution of a young stellar object (YSO), namely our Sun. Much of our knowledge about the astrophysical context of the birth of the Sun, the chronology of planetary growth from micrometer-sized dust to terrestrial planets, and the activity of the young Sun comes from the study of extinct radionuclides such as 26Al (t1/2 = 0.717 Myr). Here we review how the signatures of extinct radionuclides (short-lived isotopes that were present when the solar system formed and that have now decayed below detection level) in planetary materials influence the current paradigm of solar system formation. Particular attention is given to tying meteorite measurements to remote astronomical observations of YSOs and modeling efforts. Some extinct radionuclides were inherited from the long-term chemical evolution of the Galaxy, others were injected into the solar system by a nearby supernova, and some were produced by particle irradiation from the T-Tauri Sun. The chronology inferred from extinct radionuclides reveals that dust agglomeration to form centimeter-sized particles in the inner part of the disk was very rapid (<50 kyr), planetesimal formation started early and spanned several million years, planetary embryos (possibly like Mars) were formed in a few million years, and terrestrial planets (like Earth) completed their growths several tens of million years after the birth of the Sun.Comment: 49 pages, 9 figures, 1 table. Uncorrected preprin

    The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article

    Artificial Neural Network Inference (ANNI): A Study on Gene-Gene Interaction for Biomarkers in Childhood Sarcomas

    Get PDF
    Objective: To model the potential interaction between previously identified biomarkers in children sarcomas using artificial neural network inference (ANNI). Method: To concisely demonstrate the biological interactions between correlated genes in an interaction network map, only 2 types of sarcomas in the children small round blue cell tumors (SRBCTs) dataset are discussed in this paper. A backpropagation neural network was used to model the potential interaction between genes. The prediction weights and signal directions were used to model the strengths of the interaction signals and the direction of the interaction link between genes. The ANN model was validated using Monte Carlo cross-validation to minimize the risk of over-fitting and to optimize generalization ability of the model. Results: Strong connection links on certain genes (TNNT1 and FNDC5 in rhabdomyosarcoma (RMS); FCGRT and OLFM1 in Ewing’s sarcoma (EWS)) suggested their potency as central hubs in the interconnection of genes with different functionalities. The results showed that the RMS patients in this dataset are likely to be congenital and at low risk of cardiomyopathy development. The EWS patients are likely to be complicated by EWS-FLI fusion and deficiency in various signaling pathways, including Wnt, Fas/Rho and intracellular oxygen. Conclusions: The ANN network inference approach and the examination of identified genes in the published literature within the context of the disease highlights the substantial influence of certain genes in sarcomas
    corecore