347 research outputs found

    Fast Predictive Image Registration

    Full text link
    We present a method to predict image deformations based on patch-wise image appearance. Specifically, we design a patch-based deep encoder-decoder network which learns the pixel/voxel-wise mapping between image appearance and registration parameters. Our approach can predict general deformation parameterizations, however, we focus on the large deformation diffeomorphic metric mapping (LDDMM) registration model. By predicting the LDDMM momentum-parameterization we retain the desirable theoretical properties of LDDMM, while reducing computation time by orders of magnitude: combined with patch pruning, we achieve a 1500x/66x speed up compared to GPU-based optimization for 2D/3D image registration. Our approach has better prediction accuracy than predicting deformation or velocity fields and results in diffeomorphic transformations. Additionally, we create a Bayesian probabilistic version of our network, which allows evaluation of deformation field uncertainty through Monte Carlo sampling using dropout at test time. We show that deformation uncertainty highlights areas of ambiguous deformations. We test our method on the OASIS brain image dataset in 2D and 3D

    Simulation of damage on laminates

    Get PDF
    An experimental study on controlled faulty perturbed flexible structures is developed using an active mass damper actuator, where the flexible structure is subject to external perturbation and sensor faults. To attenuate the disturbance effects on the flexible structure, we present three robust controllers: one is based on dynamics LMI control technique design, other is an improvement of the first one but adding a chattering term, and the last one is the second one but with the chattering gain adjusted dynamically. According to experiments, where a flexible two level building with active mass damper (by Quanser), external perturbation, and sensor faults, evidence that the proposed LMI controller with chattering term where its gain is dynamically adjusted presents the best closed-loop system behavior.Postprint (published version

    Search for Radiative Decays of Cosmic Background Neutrino using Cosmic Infrared Background Energy Spectrum

    Full text link
    We propose to search for the neutrino radiative decay by fitting a photon energy spectrum of the cosmic infrared background to a sum of the photon energy spectrum from the neutrino radiative decay and a continuum. By comparing the present cosmic infrared background energy spectrum observed by AKARI and Spitzer to the photon energy spectrum expected from neutrino radiative decay with a maximum likelihood method, we obatined a lifetime lower limit of 3.1×10123.1 \times 10^{12} to 3.8×10123.8 \times 10^{12} years at 95% confidence level for the third generation neutrino ν3\nu_3 in the ν3\nu_3 mass range between 50 \mmev and 150 \mmev under the present constraints by the neutrino oscillation measurements. In the left-right symmetric model, the minimum lifetime of ν3\nu_3 is predicted to be 1.5×10171.5 \times 10^{17} years for m3m_3 of 50 \mmev. We studied the feasibility of the observation of the neutrino radiative decay with a lifetime of 1.5×10171.5 \times 10^{17} years, by measuring a continuous energy spectrum of the cosmic infrared background

    A simple strategy guides the complex metabolic regulation in Escherichia coli

    Get PDF
    A way to decipher the complexity of the cellular metabolism is to study the effect of different external perturbations. Through an analysis over a sufficiently large set of gene knockouts and growing conditions, one aims to find a unifying principle that governs the metabolic regulation. For instance, it is known that the cessation of the microorganism proliferation after a gene deletion is only transient. However, we do not know the guiding principle that determines the partial or complete recovery of the growth rate, the corresponding redistribution of the metabolic fluxes and the possible different phenotypes. In spite of this large variety in the observed metabolic adjustments, we show that responses of E. coli to several different perturbations can always be derived from a sequence of greedy and myopic resilencings. This simple mechanism provides a detailed explanation for the experimental dynamics both at cellular (proliferation rate) and molecular level ((13)C-determined fluxes), also in case of appearance of multiple phenotypes. As additional support, we identified an example of a simple network motif that is capable of implementing this myopic greediness in the regulation of the metabolism

    Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2). Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA) leading to the ischemic region. Here we explored the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126.</p> <p>Methods and result</p> <p>Rats were subjected to a 2-h middle cerebral artery occlusion (MCAO) followed by reperfusion for 48-h and the ischemic area was calculated. The expression of phosphorylated ERK1/2 and Elk-1, and of endothelin ET<sub>A </sub>and ET<sub>B</sub>, angiotensin AT<sub>1</sub>, and 5-hydroxytryptamine 5-HT<sub>1B </sub>receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ET<sub>B </sub>receptor was analyzed by quantitative Western blot. We demonstrate that there is an increase in the number of contractile smooth muscle receptors in the MCA and in micro- vessels within the ischemic region. The enhanced expression occurs in the smooth muscle cells as verified by co-localization studies. This receptor upregulation is furthermore associated with enhanced expression of pERK1/2 and of transcription factor pElk-1 in the vascular smooth muscle cells. Blockade of transcription with the MEK1 inhibitor U0126, given at the onset of reperfusion or as late as 6 hours after the insult, reduced transcription (pERK1/2 and pElk-1), the enhanced vascular receptor expression, and attenuated the cerebral infarct and improved neurology score.</p> <p>Conclusion</p> <p>Our results show that MCAO results in upregulation of cerebrovascular ET<sub>B</sub>, AT<sub>1 </sub>and 5-HT<sub>1B </sub>receptors. Blockade of this event with a MEK1 inhibitor as late as 6 h after the insult reduced the enhanced vascular receptor expression and the associated cerebral infarction.</p

    Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation.</p> <p>Methods</p> <p>We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-<it>loxP </it>transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed <it>in vitro </it>using a siRNA-knockdown strategy in cultured mouse lung epithelial cells.</p> <p>Results</p> <p>Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression.</p> <p>Conclusions</p> <p>These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF.</p

    Risk Factors and Characterization of Plasmodium Vivax-Associated Admissions to Pediatric Intensive Care Units in the Brazilian Amazon

    Get PDF
    BACKGROUND: Plasmodium vivax is responsible for a significant proportion of malaria cases worldwide and is increasingly reported as a cause of severe disease. The objective of this study was to characterize severe vivax disease among children hospitalized in intensive care units (ICUs) in the Western Brazilian Amazon, and to identify risk factors associated with disease severity. METHODS AND FINDINGS: In this retrospective study, clinical records of 34 children, 0-14 years of age hospitalized in the 11 public pediatric and neonatal ICUs of the Manaus area, were reviewed. P. falciparum monoinfection or P. falciparum/P. vivax mixed infection was diagnosed by microscopy in 10 cases, while P. vivax monoinfection was confirmed in the remaining 24 cases. Two of the 24 patients with P. vivax monoinfection died. Respiratory distress, shock and severe anemia were the most frequent complications associated with P. vivax infection. Ninety-one children hospitalized with P. vivax monoinfections but not requiring ICU were consecutively recruited in a tertiary care hospital for infectious diseases to serve as a reference population (comparators). Male sex (p = 0.039), age less than five years (p = 0.028), parasitemia greater than 500/mm(3) (p = 0.018), and the presence of any acute (p = 0.023) or chronic (p = 0.017) co-morbidity were independently associated with ICU admission. At least one of the WHO severity criteria for malaria (formerly validated for P. falciparum) was present in 23/24 (95.8%) of the patients admitted to the ICU and in 17/91 (18.7%) of controls, making these criteria a good predictor of ICU admission (p = 0.001). The only investigated criterion not associated with ICU admission was hyperbilirubinemia (p = 0.513)]. CONCLUSIONS: Our study points to the importance of P. vivax-associated severe disease in children, causing 72.5% of the malaria admissions to pediatric ICUs. WHO severity criteria demonstrated good sensitivity in predicting severe P. vivax infection in this small case series

    Novel Acid-Activated Fluorophores Reveal a Dynamic Wave of Protons in the Intestine of Caenorhabditis elegans

    Get PDF
    Unlike the digestive systems of vertebrate animals, the lumen of the alimentary canal of C. elegans is unsegmented and weakly acidic (pH ~ 4.4), with ultradian fluctuations to pH > 6 every 45 to 50 seconds. To probe the dynamics of this acidity, we synthesized novel acid-activated fluorophores termed Kansas Reds. These dicationic derivatives of rhodamine B become concentrated in the lumen of the intestine of living C. elegans and exhibit tunable pKa values (2.3–5.4), controlled by the extent of fluorination of an alkylamine substituent, that allow imaging of a range of acidic fluids in vivo. Fluorescence video microscopy of animals freely feeding on these fluorophores revealed that acidity in the C. elegans intestine is discontinuous; the posterior intestine contains a large acidic segment flanked by a smaller region of higher pH at the posterior-most end. Remarkably, during the defecation motor program, this hot spot of acidity rapidly moves from the posterior intestine to the anterior-most intestine where it becomes localized for up to 7 seconds every 45 to 50 seconds. Studies of pH-insensitive and base-activated fluorophores as well as mutant and transgenic animals revealed that this dynamic wave of acidity requires the proton exchanger PBO-4, does not involve substantial movement of fluid, and likely involves the sequential activation of proton transporters on the apical surface of intestinal cells. Lacking a specific organ that sequesters low pH, C. elegans compartmentalizes acidity by producing of a dynamic hot spot of protons that rhythmically migrates from the posterior to anterior intestine

    Gene Expression Profiling of Preovulatory Follicle in the Buffalo Cow: Effects of Increased IGF-I Concentration on Periovulatory Events

    Get PDF
    The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development
    corecore