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Abstract. In this paper, we present a recently developed progressive damage model for com-
posites (CPDM) that allows the switching between different damage modes during the numer-
ical process to mimic real physical behaviour. The modelled damage modes are ranging from
matrix cracking to fibre breakage or delamination. Moreover, the CPDM is flexible in the sense
that provides the basic structure to include variations on the evolution of damage modes when-
ever appropriate by modifying basic second-order tensors. Ongoing work for potential linkage
to the extended finite element method (XFEM) will be also shown.



J.L. Curiel Sosa, J.J. Muñoz, S.T. Pinho, Q. Li and O.A. Beg

1 INTRODUCTION

The modelling of failure of high performance materials in general –and composites in particular–
is still a recurrent problem in many aspects. Amongst others:

• The existing techniques or methods often diverge before the actual failure of the material.

• There are different concepts about how to model failure. This could be based on failure
criteria. In general, these criteria are nonlinear functionals of the stress components, see
[1] for an overview of these. They have been extensively used in the past decades. Their
main shortcomings range from abortion of the numerical process to poor replication of
switching –if any at all– between distinct damage modes in a time–marching numerical
method. There is the most recent option of using progressive damage models (PDM) that
overcome some of the problems of failure criteria but PDM cannot replicate discontinu-
ities on its own.

• Different strategies for modelling the discontinuities exerted by the cracks. Nowadays, a
number of computational methods have proved their reliability in many areas of simula-
tion. In particular, linear stress analysis is a successful story. However, the debate about
numerical strategies for modelling discontinuities such as a cracks remains open.

In this paper, we present a recently developed PDM for composites (CPDM) that allows
the switching between different damage modes during the numerical process, ranging from
matrix cracking to fibre breakage or delamination. Moreover, the proposed PDM is flexible in
the sense that provides the basic structure to include variations of damage mode evolutions if
appropriate through modification of basic second-order tensors as described below. To avoid
the nonhomogeneous stress field –measured at Gauss points– in the computation of damage,
a mapping to the strain space of the damage surfaces that conform the undamaged domain
is performed to allow a smoother numerical process, eventually, diminishing the risk of ill-
convergence in some grade.

Our main concern at this stage of the research is the link with a convenient numerical method
for replication of discontinuities. There are already interesting numerical methodologies to
perform this step. Thus, the partition of unity finite element methods (PUFEM) [2] such as
the extended finite element method (XFEM) [3] or the phantom node method (PNM) [4] offer
potential infrastructure for this potential linkage. We have used XFEM for modelling mode I
delamination with orthotropic enrichment functions and the results are excellent, see [5]. Some
of these results will be also shown in the minisymposyum even if they are not using the proposed
PDM at this moment but to highlight the advantages of XFEM. A potential way to explore is
indeed the link PDM–XFEM or PDM–PNM. However, some barriers, such as the flexibility of
the codes to allow a PDM based on continuum damage mechanics to be linked to a technique
based on discontinuities, must be clarified.

2 DAMAGE TENSOR AND EFFECTIVE STRESS

The internal damage state is characterised by a set of damage internal variables contained
within the vector ηn = [η11, η22, η33, η12, η23, η31]

T

n
. Each damage variable is responsible for

the deterioration of stiffness. Each component of the stiffness tensor can be reduced by one of
the internal variables. Note that a damage internal variable should be computed for different
damage modes depending of the loading state and type of failure. This is modelled in CPDM to
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acknowledge this fact as described below. The damage tensor containing the damage internal
variables is defined as,

Dij(ηn) = δij/(1− ηij|n) (1)

Then, the relationship between effective stress and nominal stress is,

σ̂n = D(ηn) · σn (2)

Material coordinates at ply level are defined according to:

1: longitudinal to fibres.

2: in-plane perpendicular to fibres.

3: out-of-plane perpendicular to fibres.

The stress is introduced as a contracted vector, σn = [σ11, σ22, σ33, σ12, σ23, σ31]
T

n
, and subscript

n denotes the time step tn.
The nominal stress-strain relationship may be written through a constitutive matrix that inte-

grates the internal damage state, as follows,

σn = D−1(ηn) ·C0 · εn = Cn · εn (3)

with C given in material local coordinates,

C(η) =



















(1−η11)(1−ν23ν32)
E22E33γ

(1−η11)(ν12+ν32ν13)
E11E33γ

(1−η11)(ν13+ν12ν23)
E11E22γ

0 0 0
(1−η22)(ν12+ν32ν13)

E11E33γ

(1−η22)(1−ν13ν31)
E11E33γ

(1−η22)(ν23+ν21ν13)
E11E22γ

0 0 0
(1−η33)(ν13+ν12ν23)

E11E22γ

(1−η33)(ν23+ν21ν13)
E11E22γ

(1−η33)(1−ν12ν21)
E11E22γ

0 0 0

0 0 0 (1− η12)S12 0 0
0 0 0 0 (1− η23)S23 0
0 0 0 0 0 (1− η31)S31



















γ =
(1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13)

E11E22E33

3 UNDAMAGED DOMAIN AS A FUNCTIONAL OF STRAIN

Each damage mode ξ is represented by a damage surface on the strain space. These surfaces
are mapped from stress functionals, Equation (4), which are linear combination of normalised
energy release rates (ERRN), Equation (5). The intersection of the damage surfaces on the
strain space creates the undamaged domain which shrinks with the progression of damage due
to the ERRN dependence upon damage.

Ȳij(σn,ηn) :=



σ2
ii

2Ei(1−η2ii)X
(t)
ii

∣∣∣∣
n

if i = j and σii≥0,

σ2
ii

2Ei(1−η2ii)X
(c)
ii

∣∣∣∣
n

if i = j and σii<0,

σ2
ij

2Sij(1−η2ij)Xij

∣∣∣∣
n

if i ̸=j

(4)
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where Ei is the Young’s modulus in direction i, Sij is the elastic shear modulus associated to
directions i and j, X (t)

ii represents the direct tensile strength of the laminate in direction i and,
Xij denotes the shear strength.

f ξ(σn,ηn) := f ξ(Ȳij(σn,ηn)) ξ = 1, 2, . . . ,m (5)

Equation(5) is rearranged as,

f ξ (σn,ηn) := σT

n · Fξ(ηn) · σn − 1 ξ = 1, 2, . . . ,m (6)

where Fξ denotes the tensor associated to the damage mode ξ and m is the total number of
damage modes modelled. The mapping in Equation(7) is obtained by previous computation
of these damage surfaces on the stress space. Thus, these stress damage surfaces are built as
function of the so-called ERRN in Equation(4) due to the propagation of damage variables. The
stress damage surfaces f ξ shrink with the progression and development of any damage mode
affecting them. Once f ξ are calculated the corresponding gξ damage surface on the strain space
is computed as follows,

Gξ(ηn) = CT

n · Fξ(ηn) ·Cn ξ = 1, 2, . . . ,m (7)

gξ(εn,ηn) := εT

n ·Gξ(ηn) · εn − 1 ξ = 1, 2, . . . ,m (8)

For instance for inter-ply damage, mode I (ξ = 5),

F5

n =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1/(2E3(1− η2

33)X
(t)
33 ) 0 0 0

0 0 0 0 0 0
0 0 0 0 1/(2E23(1− η2

23)X23) 0
0 0 0 0 0 1/(2E31(1− η2

31)X31)


n

(9)
or for matrix crushing in 3-direction through thickness, i.e. out-of-plane perpendicular to fibres,
(ξ = 6),

F6

n =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1/(2E3(1− η2

33)X
(c)
33 ) 0 0 0

0 0 0 0 0 0
0 0 0 0 1/(2E23(1− η2

23)X23) 0
0 0 0 0 0 1/(2E31(1− η2

31)X31)


n

(10)
The interested reader is referred to [6] for more details on these tensors associated to distinct
damage modes.

4 DAMAGE CRITERIA

Following Curiel Sosa et al. [6] the criteria used are,

∇εg
ξ
n · ε̇n > 0 gξ(εn,ηn) ≥ 0 ξ = 1, 2, . . . ,m (11)
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5 DAMAGE PATHS

The characterisation of directional vectors dξ is performed according to [6] as follows,

dξ
n := εT

n · (GξT
n +Gξ

n)/∥∇ε g
ξ
n∥ ξ = 1, 2, . . . ,m (12)

6 COMPUTATION OF DAMAGE RATE

Once the criterion in Equation(11) is satisfied the progression of the damage mode ξ con-
cerned is performed following [6],

ψξ
n := (∇εg

ξ
n · ε̇n)

1/p ξ = 1, 2, . . . ,m (13)

where ψξ denotes the corresponding increment. p is a parameter depending upon the composite
material and the geometry that must be adjusted for mesh independency. Finally, the damage
rate vector is computed according to [7],

η̇n =
m∑

ξ=1

ψξ

n d
ξ

n (14)

7 CPDM EMBEDDED INTO EXPLICIT–FEM

The algorithm of the explicit time-stepping scheme deployed is provided below in some
detail.

i Initialisation:

– n = 0, t0 = 0; u̇0 = 0; η0 = 0, σ0 = 0; X0

ii Compute lumped mass matrix M

iii Loop over time steps:

iii.1
Xn = Xn−1 + un (15)

iii.2 Loop over elements e:

iii.2.1 Compute strain:
εn = B · un (16)

iii.2.2 Call to subroutine:
εn, ηn−1 −→ Cn, σn, η̇n

iii.2.3 Update increment of damage:

∆ηn = ∆tn η̇n (17)

iii.2.4 Damage internal variables:

ηn+1 = ηn +∆ηn (18)

iii.2.5 Element stiffness matrix:

k(e)

n =

∫
Ωe

BT ·Cn ·B dΩ (19)
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iii.2.6 End loop over elements.
iii.3 Assembly for all elements:

K(int)

n =
numel∧
e=1

k(e)

n (20)

iii.4 Update nodal external force vector:

f (ext)

n =
numel∧
e=1

{∫
Ωe

NT bndΩ +

∫
Γe

NT qn dΓ

}
(21)

iii.5 Compute acceleration :

ün = M−1 · [f (ext)

n − f (int)(ηn)] (22)

iii.6 Compute the nodal mid-step velocities u̇n+1/2 as,

u̇n+1/2 = u̇n−1/2 +∆tn ün (23)

iii.7 Nodal displacement vector:

un+1 = un +∆tn+1/2 u̇n+1/2 (24)

iv New critical time step ∆t(crit)n , update time step ∆tn = α∆t(crit)n , α ⊆]0, 1], and check
convergence (relative norm of the residual).

v End loop over time steps.

Above, N is the shape functions tensor, bn are body forces, qn the traction forces applied
over the boundary of the body, and B is the strains operator.

8 NUMERICAL RESULTS

Single element tests were used for validation [1]. CPDM was able to detect the right modes
of damage in tension (matrix cracking and fibre breakage) and compression tests (matrix crush-
ing and fibre kinking) performed over a single element. The proposed technique was used to
simulate maps of damage in a cross-ply laminate when impacted by a projectile at low velocity.
The results of delamination and matrix crushing from Curiel Sosa et al. [6] will be shown in the
conference presentation in some detail and compared with experiments by [8].

9 CONCLUSION

The formulation of a technique for composite laminate damage simulation was presented in
this note. The main characteristics of CPDM are enumerated as follows:

1. Calculation of damage directions.

2. Growth functions of ERRN mapped onto strain space for greater stability.

3. Criteria of damage based on shrinkage of strain damage surfaces and positive accumula-
tion of damage.

CPDM is able to address initiation of distinct damage modes and damage evolution afterwards.
A further development is intended in relation to use PUFEM in conjunction with CPDM. At
the moment, that PUFEM-CPDM connection is ongoing. Complete results or in-development
work will be presented at the time of the conference.
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J.L. Curiel Sosa, J.J. Muñoz, S.T. Pinho, Q. Li and O.A. Beg

REFERENCES

[1] J.L. Curiel Sosa. Finite element analysis of progressive degradation versus failure stress
criteria on reinforced composite materials subjected to impact loading. Chapter in: Attaf,
B. (Ed.), Advances in Composite Materials, 2011.

[2] I. Babuska, J.M. Melenk. The partition of unity method. International Journal for Nu-
merical Methods in Engineering, 40(4) (1997), 727–758.

[3] T. Belytschko, T. Blacks. Elastic crack growth in finite elements with minimal re-meshing.
International Journal of Numerical Methods in Engineering, 45 (1999), 601–620.

[4] A. Hansbo, P. Hansbo. A finite element method for the simulation of strong and weak
discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engi-
neering 193(33–35) (2004), 3523-3540

[5] J.L. Curiel Sosa, N. Karapurath. Delamination modelling of GLARE using the extended
finite element method. Composites Science and Technology, 72(7) (2012), 788–791.

[6] J.L. Curiel Sosa, S. Phaneendra, J.J. Muñoz. Modelling of mixed mode damage on fibre
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