5,291 research outputs found

    Seismic vulnerability assessment and evaluation of high rise buildings in Islamabad

    Get PDF
    Primarily the aim of this research is to carry out seismic evaluation study of buildings structures in Islamabad in order to propose basic guidelines and suggestions for Pakistan Code. Knowing the important nature of the subject, the earthquake based organizations are serious to compile a document for seismic threatened countries and areas. It is aimed that the document will work as a guideline source for the seismic evaluation, calculation and assessment of strength, behavior and expected performance and also the safety of already existing buildings. This study is based on review of already available documents on seismic vulnerability and evaluation of present buildings at different sites is carried out in order to know the key components of this very procedure so that it can be used in Pakistan and also in other developing countries as well. This would not only be robust, safe and reliable, but also can be convenient to use within the domain of available resources. ASCE 31-03 guidelines among the available documents are considered to be a suitable and the most reliable for to be in Pakistan

    Current-Voltage Characteristics of Long-Channel Nanobundle Thin-Film Transistors: A Bottom-up Perspective

    Full text link
    By generalizing the classical linear response theory of stick percolation to nonlinear regime, we find that the drain current of a Nanobundle Thin Film Transistor (NB-TFT) is described under a rather general set of conditions by a universal scaling formula ID = A/LS g(LS/LC, rho_S * LS * LS) f(VG, VD), where A is a technology-specific constant, g is function of geometrical factors like stick length (LS), channel length (LC), and stick density (rho_S) and f is a function of drain (VD) and gate (VG) biasing conditions. This scaling formula implies that the measurement of full I-V characteristics of a single NB-TFT is sufficient to predict the performance characteristics of any other transistor with arbitrary geometrical parameters and biasing conditions

    Reconstructing generalized ghost condensate model with dynamical dark energy parametrizations and observational datasets

    Get PDF
    Observations of high-redshift supernovae indicate that the universe is accelerating at the present stage, and we refer to the cause for this cosmic acceleration as ``dark energy''. In particular, the analysis of current data of type Ia supernovae (SNIa), cosmic large-scale structure (LSS), and the cosmic microwave background (CMB) anisotropy implies that, with some possibility, the equation-of-state parameter of dark energy may cross the cosmological-constant boundary (w=1w=-1) during the recent evolution stage. The model of ``quintom'' has been proposed to describe this w=1w=-1 crossing behavior for dark energy. As a single-real-scalar-field model of dark energy, the generalized ghost condensate model provides us with a successful mechanism for realizing the quintom-like behavior. In this paper, we reconstruct the generalized ghost condensate model in the light of three forms of parametrization for dynamical dark energy, with the best-fit results of up-to-date observational data.Comment: 8 pages, 3 figures; references added; accepted for publication in Mod. Phys. Lett.

    Constraints on holographic dark energy models using the differential ages of passively evolving galaxies

    Full text link
    Using the absolute ages of passively evolving galaxies observed at different redshifts, one can obtain the differential ages, the derivative of redshift zz with respect to the cosmic time tt (i.e. dz/dt{\rm d} z/{\rm d}t). Thus, the Hubble parameter H(z)H(z) can be measured through the relation H(z)=(dz/dt)/(1+z)H(z)=-({\rm d} z/{\rm d}t)/(1+z). By comparing the measured Hubble parameter at different redshifts with the theoretical one containing free cosmological parameters, one can constrain current cosmological models. In this paper, we use this method to present the constraint on a spatially flat Friedman-Robert-Walker Universe with a matter component and a holographic dark energy component, in which the parameter cc plays a significant role in this dark energy model. Firstly we consider three fixed values of cc=0.6, 1.0 and 1.4 in the fitting of data. If we set cc free, the best fitting values are c=0.26c=0.26, Ωm0=0.16\Omega_{\rm m0}=0.16, h=0.9998h=0.9998. It is shown that the holographic dark energy behaves like a quintom-type at the 1σ1\sigma level. This result is consistent with some other independent cosmological constrains, which imply that c<1.0c<1.0 is favored. We also test the results derived from the differential ages using another independent method based on the lookback time to galaxy clusters and the age of the universe. It shows that our results are reliable.Comment: 18 pages including 7 figures and 1 tables. Final version for publication in Modern Physics Letters A (MPLA)[minor revision to match the appear version

    A Tracker Solution for a Holographic Dark Energy Model

    Full text link
    We investigate a kind of holographic dark energy model with the future event horizon the IR cutoff and the equation of state -1. In this model, the constraint on the equation of state automatically specifies an interaction between matter and dark energy. With this interaction included, an accelerating expansion is obtained as well as the transition from deceleration to acceleration. It is found that there exists a stable tracker solution for the numerical parameter d>1d>1, and dd smaller than one will not lead to a physical solution. This model provides another possible phenomenological framework to alleviate the cosmological coincidence problem in the context of holographic dark energy. Some properties of the evolution which are relevant to cosmological parameters are also discussed.Comment: 10 pages, 3 figures; accepted for publication in Int.J.Mod.Phys.

    Interacting holographic tachyon model of dark energy

    Get PDF
    We propose a holographic tachyon model of dark energy with interaction between the components of the dark sector. The correspondence between the tachyon field and the holographic dark energy densities allows the reconstruction of the potential and the dynamics of the tachyon scalar field in a flat Friedmann-Robertson-Walker universe. We show that this model can describe the observed accelerated expansion of our universe with a parameter space given by the most recent observational results.Comment: 7 pages, 8 figures, accepted for publication in IJMP

    Reconstructing f(R) model from Holographic DE: Using the observational evidence

    Full text link
    We investigate the corresponding relation between f(R)f(R) gravity and an interacting holographic dark energy. By obtaining conditions needed for some observational evidence such as, positive acceleration expansion of universe, crossing the phantom divide line and validity of thermodynamics second law in an interacting HDE model and corresponding it with f(R)f(R) mode of gravity we find a viable f(R)f(R) model which can explain the present universe. We also obtain the explicit evolutionary forms of the corresponding scalar field, potential and scale factor of universe.Comment: 11page. phys. Scr (2012

    Photons from Quark Gluon Plasma and Hot Hadronic Matter

    Get PDF
    The productions of real photons from quark gluon plasma and hot hadronic matter formed after the nucleus - nucleus collisions at ultra-relativistic energies are discussed. The effects of the spectral shift of the hadrons at finite temperature on the production of photons are investigated. On the basis of the present analysis it is shown that the photon spectra measured by WA98 collaboration in Pb + Pb collisions at CERN SPS energies can be explained by both QGP as well as hadronic initial states if the spectral shift of hadrons at finite temperature is taken into account. Several other works on the analysis of WA98 photon data have also been briefly discussed.Comment: Latex file, six eps figures include

    Amplification of 12 OAM states in an air-core EDF

    No full text
    We propose the amplification of 12 OAM modes in an air-core EDF using either core- or cladding- pumping at 980nm. Differential modal gains of only 0.25dB among all the 12-modes are achieved over the C-band

    Testing the viability of the interacting holographic dark energy model by using combined observational constraints

    Full text link
    Using the data coming from the new 182 Gold type Ia supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, H(z)H(z) and lookback time measurements, we have performed a statistical joint analysis of the interacting holographic dark energy model. Consistent parameter estimations show us that the interacting holographic dark energy model is a viable candidate to explain the observed acceleration of our universe.Comment: 15 pages, 9 figures, accepted for publication in JCA
    corecore