40 research outputs found

    Distribution of sialic acids on mucins and gels: a defense mechanism

    Get PDF
    Moist mucosal epithelial interfaces that are exposed to external environments are dominated by sugar epitopes, some of which (e.g., sialic acids) are involved in host defense. In this study, we determined the abundance and distribution of two sialic acids to assess differences in their availability to an exogenous probe in isolated mucins and mucous gels. We used atomic force microscopy to obtain force maps of human preocular mucous and purified ocular mucins by probing and locating the interactions between tip-tethered lectins Maackia amurensis and Sambucus nigra and their respective receptors, α-2,3 and α-2,6 N-acetylneuraminic (sialic) acids. The rupture force distributions were not affected by neighboring sugar-bearing molecules. Energy contours for both lectin-sugar bonds were fitted to a two-barrier model, suggesting a conformational change before dissociation. In contrast to data from purified mucin molecules, the preocular gels presented numerous large clusters (19,000 ± 4000 nm2) of α-2,6 sialic acids, but very few small clusters (2000 ± 500 nm2) of α-2,3 epitopes. This indicates that mucins, which are rich in α-2,3 sialic acids, are only partially exposed at the surface of the mucous gel. Microorganisms that recognize α-2,3 sialic acids will encounter only isolated ligands, and the adhesion of other microorganisms will be enhanced by large islands of neighboring α-2,6 sialic acids. We have unveiled an additional level of mucosal surface heterogeneity, specifically in the distribution of pro- and antiadhesive sialic acids that protect underlying epithelia from viruses and bacteria

    Size-Controlled Synthesis of Colloidal Gold Nanoparticles at Room Temperature Under the Influence of Glow Discharge

    Get PDF
    Highly dispersed colloidal gold (Au) nanoparticles were synthesized at room temperature using glow discharge plasma within only 5 min. The prepared Au colloids were characterized with UV–visible absorption spectra (UV–vis), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) equipped with an energy dispersion X-ray spectrometer (EDX). UV–vis, XPS and EDX results confirmed that Au3+ ions in HAuCl4 solution could be effectively reduced into the metallic state at room temperature with the glow discharge plasma. TEM images showed that Au nanoparticles were highly dispersed. The size of colloidal Au nanoparticles could be easily tuned in the nanometer range by adjusting the initial concentration of HAuCl4 solution. Moreover, the as-synthesized Au colloids (dav = 3.64 nm) exhibited good catalytic activity for glucose oxidation. The nucleation and growth of colloidal Au particles under the influence of the plasma was closely related with the high-energy electrons generated by glow discharge plasma

    Equilibrium heat-induced denaturation of chitinase 40 from Streptomyces thermoviolaceus

    No full text
    High-precision differential scanning calorimetry (DSC) and circular dichroism (CD) have been employed to study the thermal unfolding of chitinase 40 (Chi40) from Streptomyces thermoviolaceus. Chi40 belongs to family 18 of glycosyl hydrolase superfamily bearing a catalytic domain with a "TIM barrel"-like fold, which exhibits deviations from the (β/α) 8 fold. The thermal unfolding is reversible at pH = 8.0 and 9.0. The denatured state is characterized by extensive structural changes with respect to the native. The process is characterized by slow relaxation kinetics. Even slower refolding rates are recorded upon cooling. It is shown that the denaturation calorimetric data obtained at slow heating rate (0.17 K/min) are in excellent agreement with equilibrium data obtained by extrapolation of the experimental results to zero scanning rate. Analysis of the DSC results reveals that the experimental data can be successfully fitted using either a nontwo-state sequential model involving one equilibrium intermediate, or an independent transitions model involving the unfolding of two Chi40 energetic domains to intermediate states. The stability of the native state with respect to the final denatured state is estimated, ΔG = 24.0 kcal/mol at 25°C. The thermal results are in agreement with previous findings from chemical denaturation studies of a wide variety of (β/α)8 barrel proteins, that their unfolding is a nontwo-state process, always involving at least one unfolding intermediate. © 2006 Wiley-Liss, Inc

    Thermal denaturation of the BRCT tandem repeat region of human tumour suppressor gene product BRCA1

    No full text
    Reduced stability of the tandem BRCT domains of human BReast CAncer 1 (BRCA1) due to missense mutations may be critical for loss of function in DNA repair and damage-induced checkpoint control. In the present thermal denaturation study of the BRCA1 BRCT region, high-precision differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy provide evidence for the existence of a denatured state that is structurally very similar to the native. Consistency between theoretical structure-based estimates of the enthalpy (ΔH) and heat capacity change (ΔCp) and the calorimetric results is obtained when considering partial thermal unfolding contained in the region of the conserved hydrophobic pocket formed at the interface of the two BRCT repeats. The structural integrity of this region has been shown to be crucial for the interaction of BRCA1 with phosphorylated peptides. In addition, cancer-causing missense mutations located at the inter-BRCT-repeat interface have been linked to the destabilization of the tandem BRCT structure. © 2004 Elsevier B.V. All rights reserved
    corecore