4 research outputs found

    Hydrothermally-assisted recovery of Yttria- stabilized zirconia (YSZ) from end-of-life solid oxide cells

    Get PDF
    Effective and scalable recycling strategies for the recovery of critical raw materials are yet to be validated for solid oxide cells (SOCs) technologies. The current study aimed at filling this gap by developing optimized recycling processes for the recovery of Yttria-stabilized Zirconia (YSZ) from End-of-Life (EoL) SOC components, in view of using the recovered ceramic phase in cell re-manufacturing. A multi-step procedure, including milling, hydrothermal treatment (HT), and acidic-assisted leaching of nickel from composite Ni-YSZ materials, has been implemented to obtain recovered YSZ powders with defined specifications, in terms of particle size distribution, specific surface area, and chemical purity. The overall optimized procedure includes a pre-milling step (6 h) of the EoL composite materials, and a hydrothermal (HT) treatment at 200 Β°C for 4 h to further disaggregate the sintered composite, followed by selective oxidative leaching of Ni2+ by HNO3 solution at 80 Β°C for 2 h. In particular, the intermediate HT step was assessed to play an essential role in promoting the disaggregation of the sintered powders, with a related increase of specific surface area (up to 13 m2 gβˆ’1) and the overall reduction of the primary particle aggregates. The acid-assisted leaching allowed to fully extract Nickel from the composite Ni-YSZ powders, with retention of YSZ crystallinity and negligible loss of Zr and Y, as revealed by ICP analysis on the recovered supernatants. The developed multi-step pathway offers a promising strategy to recover valuable YSZ materials for the re-manufacturing of SOCs components, with the aim to boost a circular economy approach in the field of fuel-cell and hydrogen (FCH) technologies

    Π‘ΠΈΠ½Ρ‚Π΅Π· Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π° основС Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Ρ… оксофторидов

    Get PDF
    ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. Π ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° Π½ΠΎΠ²ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² для систСм відобраТСння Ρ‚Π° рСєстрації ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… сигналів, які ΠΌΠΎΠΆΡƒΡ‚ΡŒ ΠΏΡ€Π°Ρ†ΡŽΠ²Π°Ρ‚ΠΈ Π² Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ– Ρ–Π½Ρ„Ρ€Π°Ρ‡Π΅Ρ€Π²ΠΎΠ½ΠΎΠ³ΠΎ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ, Π·Π°Π»ΠΈΡˆΠ°Ρ”Ρ‚ΡŒΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡŽ. Π“Π°Π»ΡƒΠ·ΡŒ ΠΎΠΏΡ‚ΠΈΠΊΠΈ зіткнулася Π· ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΡŽ, ΠΊΠΎΠ»ΠΈ Π²Ρ–Π΄ΠΎΠΌΡ– систСми Π½Π° основі силікатного скла Π½Π΅ Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡŽΡ‚ΡŒ Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎΡ— ΡˆΠΈΡ€ΠΈΠ½ΠΈ Π·ΠΎΠ½ΠΈ прозорості, Π° ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Π½Π° основі Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄Ρ–Π² ΠΌΠ΅Ρ‚Π°Π»Ρ–Π² ΠΌΠ°ΡŽΡ‚ΡŒ Π½ΠΈΠ·ΡŒΠΊΡƒ Ρ…Ρ–ΠΌΡ–Ρ‡Π½Ρƒ ΡΡ‚Ρ–ΠΉΠΊΡ–ΡΡ‚ΡŒ. ΠœΠ΅Ρ‚Π° дослідТСння. Π ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³Ρ–Ρ—, спрямованої Π½Π° синтСз Ρ‚Π° дослідТСння властивостСй Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄Π½ΠΈΡ… стСкол Ρ– оксофторидів Ρ€Ρ–Π΄ΠΊΡ–ΡΠ½ΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² (Π Π—Π•) Ρ‚Π° Ρ–Ρ‚Ρ€Ρ–ΡŽ. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ—. Застосовано комплСксний ΠΏΡ–Π΄Ρ…Ρ–Π΄ Π΄ΠΎ синтСзу Ρ‚Π° Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Ρ–Π· використанням Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΈΡ…, Ρ€Π΅Π½Ρ‚Π³Π΅Π½Ρ–Π²ΡΡŒΠΊΠΈΡ…, Π»ΡŽΠΌΡ–Π½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΈΡ… Ρ‚Π° Ρ–Π½ΡˆΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π². Π―ΠΊ Π²ΠΈΡ…Ρ–Π΄Π½Ρ– Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ використовувалися ΠΊΠΎΠΌΠ΅Ρ€Ρ†Ρ–ΠΉΠ½Ρ– сполуки ZrF4; LaF3; AlF3; GaF3; BaF2; YF3; Y2O3; EuF3; Eu2O3; GdF3; Gd2O3; TbF3; Tb2O3. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ дослідТСння. ДослідТСно ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ створСння Π»ΡŽΠΌΡ–Π½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² Π½Π° основі Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ скла складу 95 % ZLAG + 5 % ZBLA Ρ‚Π° оксофторидів Π Π—Π•. ΠŸΡ€ΠΈ синтСзі Ρ†ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² як Π»ΡŽΠΌΡ–Π½ΠΎΡ„ΠΎΡ€ΠΈ Π±ΡƒΠ»ΠΎ використано сполуки Ρ”Π²Ρ€ΠΎΠΏΡ–ΡŽ Ρ– Ρ‚Π΅Ρ€Π±Ρ–ΡŽ, які Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΡŽΡ‚ΡŒ світло Ρƒ Π²ΠΈΠ΄ΠΈΠΌΡ–ΠΉ частині спСктра. Висновки. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΎΠ²Π°Π½Ρ– Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄Π½Ρ– стСкла ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані як пСрспСктивні ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ для ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… ΠΏΡ–Π΄ΡΠΈΠ»ΡŽΠ²Π°Ρ‡Ρ–Π² Ρ‚Π° Π»Π°Π·Π΅Ρ€Ρ–Π². ΠžΠΊΡΠΎΡ„Ρ‚ΠΎΡ€ΠΈΠ΄ΠΈ, ΠΌΠ°ΡŽΡ‡ΠΈ Π³Π°Ρ€Π½Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Π²ΠΈΡ…ΠΎΠ΄Ρƒ Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΡ–Π½Π΅ΡΡ†Π΅Π½Ρ†Ρ–Ρ— Ρ‚Π° Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½Ρƒ Ρ–Π½Π΅Ρ€Ρ‚Π½Ρ–ΡΡ‚ΡŒ Π΄ΠΎ агрСсивних сСрСдовищ, ΠΌΠΎΠΆΡƒΡ‚ΡŒ стати пСрспСктивними ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Π°ΠΌΠΈ для виготовлСння Π»ΡŽΠΌΡ–Π½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² для ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ використання.Background. Development of new materials for the systems of reflection and registration of visual signals that can work in the infrared range remains an ongoing. Industry of optics ran into a problem, when the known systems based on silicate glass do not provide the necessary width of zone of transparency, and materials based on fluoride of metals have subzero chemical firmness. Objective. The aim of the work is development of the methodology towards the synthesis and research of properties of fluoride glasses and oxyfluorides of rare-earth elements (REE) and yttrium. Methods. To achieve the goal approach is applied in relation to a synthesis and research with the use of thermal, x-rayed, luminescent and other methods. As initial substances commercial connections ZrF4; LaF3; AlF3; GaF3; BaF2; YF3; Y2O3; EuF3; Eu2O3; GdF3; Gd2O3; TbF3; Tb2O3 were used. Results. The possibility to create luminescent materials based on fluoride glasses of 95 % ZLAG + 5 % ZBLA and oxyfluorides of REE has been studied. For synthesis of these materials europium and terbium compounds have been used as luminophores emitting in visible spectrum. Conclusions. According to the experimental data, it can be concluded that synthesized fluoride glasses can be used as perspective materials for optic amplifiers and lasers, where besides physical properties, one of the most important requirements is a possibility to take a necessary form of final product. The oxyfluorides having good photoluminescent yield and resistivity to aggressive milieu can be perspective materials for luminescent dispositifs of common use.ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² для систСм отраТСния ΠΈ рСгистрации оптичСских сигналов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ инфракрасного излучСния, остаСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ. ΠžΡ‚Ρ€Π°ΡΠ»ΡŒ ΠΎΠΏΡ‚ΠΈΠΊΠΈ ΡΡ‚ΠΎΠ»ΠΊΠ½ΡƒΠ»Π°ΡΡŒ с ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ, ΠΊΠΎΠ³Π΄Π° извСстныС систСмы Π½Π° основС силикатного стСкла Π½Π΅ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡƒΡŽ ΡˆΠΈΡ€ΠΈΠ½Ρƒ Π·ΠΎΠ½Ρ‹ прозрачности, Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² ΠΈΠΌΠ΅ΡŽΡ‚ Π½ΠΈΠ·ΠΊΡƒΡŽ Ρ…ΠΈΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ. ЦСль исслСдования. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠΉ Π½Π° синтСз ΠΈ исслСдованиС свойств стСкол Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄ΠΎΠ² ΠΈ оксофторидов Ρ€Π΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов (Π Π—Π­) ΠΈ иттрия. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ комплСксный ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ синтСза ΠΈ исслСдований с использованиСм тСрмичСских, рСнтгСновских, Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ². Π’ качСствС исходных вСщСств использовались коммСрчСскиС соСдинСния ZrF4; LaF3; AlF3; GaF3; BaF2; YF3; Y2O3; EuF3; Eu2O3; GdF3; Gd2O3; TbF3; Tb2O3. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований. ИсслСдована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ создания Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π° основС Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ стСкла состава 95 % ZLAG + 5 % ZBLA ΠΈ оксофторидов Π Π—Π­. ΠŸΡ€ΠΈ синтСзС Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π² Ρ€ΠΎΠ»ΠΈ Π»ΡŽΠΌΠΈΠ½ΠΎΡ„ΠΎΡ€ΠΎΠ² Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ соСдинСния Свропия ΠΈ тСрбия, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‚ свСт Π² Π²ΠΈΠ΄ΠΈΠΌΠΎΠΉ части спСктра. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ стСкла Ρ„Ρ‚ΠΎΡ€ΠΈΠ΄ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² качСствС пСрспСктивных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² для оптичСских усилитСлСй ΠΈ Π»Π°Π·Π΅Ρ€ΠΎΠ². ΠžΠΊΡΠΎΡ„Ρ‚ΠΎΡ€ΠΈΠ΄Ρ‹, имСя Ρ…ΠΎΡ€ΠΎΡˆΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Π° Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-Ρ…ΠΈΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΈΠ½Π΅Ρ€Ρ‚Π½ΠΎΡΡ‚ΡŒ ΠΊ агрСссивным срСдам, ΠΌΠΎΠ³ΡƒΡ‚ ΡΡ‚Π°Ρ‚ΡŒ пСрспСктивными ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°ΠΌΠΈ для изготовлСния Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² для ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ использования

    Stack optimization and testing for its integration in a rSOC-based renewable energy storage system

    No full text
    International audienceStacks dedicated to rSOC operation require improvements as compared to stacks dedicated to purely SOEC or SOFC mode. Starting from an electrolysis stack, improvements have been performed in the European project REFLEX, mainly to enhance reactants distribution, reduce pressure drops, integrate new cells specifically developed as part of REFLEX project, and finally integrate larger cells to reduce stack and system cost and footprint. For easier handling, mechanical connection to the system was optimized. Long-term degradation tests were performed both for reference and optimized cells within two 5-cell stacks. A full size 25-cell stack was assembled integrating optimized connections to gases lines, specific stack clamping system and internal electrical insulation required for stack integration into REFLEX modules. For prospective reason enlarged cells were produced and integrated within first a 5-cell stack, and then a 25-cell stack. Finally, stability of performance along pre-serial manufacturing process was checked for 20 stacks before their delivery forintegration into REFLEX modules
    corecore