1,886 research outputs found

    A survey of stellar X-ray flares from the XMM-Newton serendipitous source catalogue: Hipparcos-Tycho cool stars

    Full text link
    The X-ray emission from flares on cool (i.e. spectral-type F-M) stars is indicative of very energetic, transient phenomena, associated with energy release via magnetic reconnection. We present a uniform, large-scale survey of X-ray flare emission. The XMM-Newton Serendipitous Source Catalogue and its associated data products provide an excellent basis for a comprehensive and sensitive survey of stellar flares - both from targeted active stars and from those observed serendipitously in the half-degree diameter field-of-view of each observation. The 2XMM Catalogue and the associated time-series (`light-curve') data products have been used as the basis for a survey of X-ray flares from cool stars in the Hipparcos Tycho-2 catalogue. In addition, we have generated and analysed spectrally-resolved (i.e. hardness-ratio), X-ray light-curves. Where available, we have compared XMM OM UV/optical data with the X-ray light-curves. Our sample contains ~130 flares with well-observed profiles; they originate from ~70 stars. The flares range in duration from ~1e3 to ~1e4 s, have peak X-ray fluxes from ~1e-13 to ~1e-11 erg/cm2/s, peak X-ray luminosities from ~1e29 to ~1e32 erg/s, and X-ray energy output from ~1e32 to ~1e35 erg. Most of the ~30 serendipitously-observed stars have little previously reported information. The hardness-ratio plots clearly illustrate the spectral (and hence inferred temperature) variations characteristic of many flares, and provide an easily accessible overview of the data. We present flare frequency distributions from both target and serendipitous observations. The latter provide an unbiased (with respect to stellar activity) study of flare energetics; in addition, they allow us to predict numbers of stellar flares that may be detected in future X-ray wide-field surveys. The serendipitous sample demonstrates the need for care when calculating flaring rates.Comment: 26 pages, 24 figures. Additional tables and figures available as 4 ancillary files. To be published in Astronomy and Astrophysic

    An XMM-Newton observation of the young open cluster NGC 2547: coronal activity at 30 Myr

    Full text link
    We report XMM-Newton observations of the young open cluster NGC 2547 which allow us to characterise coronal activity in solar-type stars at an age of 30 Myr. X-ray emission peaks among G-stars at luminosities (0.3-3keV) of Lx~10^{30.5} erg/s and declines to Lx<=10^{29.0} erg/s among M-stars. Coronal spectra show evidence for multi-temperature differential emission measures and low coronal metal abundances (Z~0.3). The G- and K-type stars follow the same relationship between X-ray activity and Rossby number established in older clusters and field stars, although most solar-type stars in NGC 2547 exhibit saturated/super-saturated X-ray activity levels. Median levels of Lx and Lx/Lbol in the solar-type stars of NGC 2547 are similar to T-Tauri stars of the Orion Nebula cluster (ONC), but an order of magnitude higher than in the older Pleiades. The spread in X-ray activity levels among solar-type stars in NGC 2547 is much smaller than in older or younger clusters. Coronal temperatures increase with Lx, Lx/Lbol and surface X-ray flux. Active solar-type stars in NGC 2547 have coronal temperatures between those in the ONC and the most active older ZAMS stars. A flaring rate (for total flare energies [0.3-3keV] >10^{34} erg) of 1 every 350^{+350}_{-120} ks was found for solar-type stars, similar to rates found in the ONC and Pleiades. Comparison with ROSAT HRI data taken 7 years previously reveals that only 10-15 percent of solar-type stars or stars with Lx>3x10^{29} erg/s exhibit X-ray variability by more than a factor of two. The similar levels of X-ray activity and rate of occurrence for large flares in NGC 2547 and the ONC demonstrate that the X-ray radiation environment around young solar-type stars remains relatively constant over their first 30 Myr (abridged).Comment: Accepted for publication in MNRAS. Electronic tables available from the autho

    Broadband Acoustic Measurement of the Agar-based Tissue Mimicking Material: a Longitudinal Study

    Get PDF
    Commercially available ultrasound quality assurance test phantoms rely on the long-term acoustic stability of the tissue-mimicking-material (TMM). Measurement of the acoustic properties of the TMM can be technically challenging, and it is important to ensure its stability. The standard technique is to film-wrap samples of TMM and to measure the acoustic properties in a water bath. In this study, a modified technique was proposed whereby the samples of TMM are measured in a preserving fluid that is intended to maintain their characteristics. The acoustic properties were evaluated using a broadband pulse-echo substitution technique over the frequency range 4.5–50 MHz at 0, 6 and 12 months using both techniques. For both techniques, the measured mean values for the speed of sound and attenuation were very similar and within the International Electrotechnical Commission-recommended value. However, the results obtained using the proposed modified technique exhibited greater stability over the 1-y period compared with the results acquired using the standard technique

    Particle dynamics of a cartoon dune

    Get PDF
    The spatio-temporal evolution of a downsized model for a desert dune is observed experimentally in a narrow water flow channel. A particle tracking method reveals that the migration speed of the model dune is one order of magnitude smaller than that of individual grains. In particular, the erosion rate consists of comparable contributions from creeping (low energy) and saltating (high energy) particles. The saltation flow rate is slightly larger, whereas the number of saltating particles is one order of magnitude lower than that of the creeping ones. The velocity field of the saltating particles is comparable to the velocity field of the driving fluid. It can be observed that the spatial profile of the shear stress reaches its maximum value upstream of the crest, while its minimum lies at the downstream foot of the dune. The particle tracking method reveals that the deposition of entrained particles occurs primarily in the region between these two extrema of the shear stress. Moreover, it is demonstrated that the initial triangular heap evolves to a steady state with constant mass, shape, velocity, and packing fraction after one turnover time has elapsed. Within that time the mean distance between particles initially in contact reaches a value of approximately one quarter of the dune basis length

    Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO_3)

    Get PDF
    Secondary organic aerosol (SOA) formation from the reaction of isoprene with nitrate radicals (NO3) is investigated in the Caltech indoor chambers. Experiments are performed in the dark and under dry conditions (RH<10%) using N2O5 as a source of NO3 radicals. For an initial isoprene concentration of 18.4 to 101.6 ppb, the SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) ranges from 4.3% to 23.8%. By examining the time evolutions of gas-phase intermediate products and aerosol volume in real time, we are able to constrain the chemistry that leads to the formation of low-volatility products. Although the formation of ROOR from the reaction of two peroxy radicals (RO2) has generally been considered as a minor channel, based on the gas-phase and aerosol-phase data it appears that RO2+RO2 reaction (self reaction or cross-reaction) in the gas phase yielding ROOR products is a dominant SOA formation pathway. A wide array of organic nitrates and peroxides are identified in the aerosol formed and mechanisms for SOA formation are proposed. Using a uniform SOA yield of 10% (corresponding to Mo≅10 μg m−3), it is estimated that ~2 to 3 Tg yr−1 of SOA results from isoprene + NO3. The extent to which the results from this study can be applied to conditions in the atmosphere depends on the fate of peroxy radicals (i.e. the relative importance of RO2+RO2 versus RO2+NO3 reactions) in the nighttime troposphere

    An XMM—Newton observation of the young open cluster NGC 2547: coronal activity at 30 Myr

    Get PDF
    We report on XMM—Newton observations of the young open cluster NGC 2547 which allow us to characterize coronal activity in solar-type stars, and stars of lower mass, at an age of 30 Myr. X-ray emission is seen from stars at all spectral types, peaking among G stars at luminosities (0.3-3 keV) of Lx≃ 1030.5 erg s−1 and declining to Lx≤ 1029.0 erg s−1 among M stars with masses ≥0.2 M⊙. Coronal spectra show evidence for multi-temperature differential emission measures and low coronal metal abundances of Z≃ 0.3. The G- and K-type stars of NGC 2547 follow the same relationship between X-ray activity and Rossby number established in older clusters and field stars, although most of the solar-type stars in NGC 2547 exhibit saturated or even supersaturated X-ray activity levels. The median levels of Lx and Lx/Lbol in the solar-type stars of NGC 2547 are very similar to those in T-Tauri stars of the Orion Nebula cluster (ONC), but an order of magnitude higher than in the older Pleiades. The spread in X-ray activity levels among solar-type stars in NGC 2547 is much smaller than in older or younger clusters. Coronal temperatures increase with Lx, Lx/Lbol and surface X-ray flux. The most active solar-type stars in NGC 2547 have coronal temperatures intermediate between those in the ONC and the most active older zero-age main-sequence (ZAMS) stars. We show that simple scaling arguments predict higher coronal temperature in coronally saturated stars with lower gravities. A number of candidate flares were identified among the low-mass members and a flaring rate [for total flare energies (0.3-3 keV) > 1034 erg] of one every 350+350−120 ks was found for solar-type stars, which is similar to rates found in the ONC and Pleiades. Comparison with ROSAT High Resolution Imager (HRI) data taken 7 yr earlier reveals that only 10-15 per cent of solar-type stars or stars with Lx > 3 × 1029 erg s−1 exhibit X-ray variability by more than a factor of 2. This is comparable with clusters of similar age but less than in both older and younger clusters. The similar median levels of X-ray activity and rate of occurrence for large flares in NGC 2547 and the ONC demonstrate that the X-ray radiation environment around young solar-type stars remains relatively constant over their first 30 My

    Contending cultures of counterterrorism: transatlantic divergence or convergence?

    Get PDF
    Terrorist attacks on the United States, Spain and the United Kingdom have underlined the differing responses of Europe and the United States to the 'new terrorism'. This article analyses these responses through the prism of historically determined strategic cultures. For the last four years the United States has directed the full resources of a 'national security' approach towards this threat and has emphasized unilateralism. Europe, based on its own past experience of terrorism, has adopted a regulatory approach pursued through multilateralism. These divergences in transatlantic approaches, with potentially major implications for the future of the relationship, have appeared to be mitigated by a revised American strategy of counterterrorism that has emerged during 2005. However, this article contends that while strategic doctrines may change, the more immutable nature of strategic culture will make convergence difficult. This problem will be compounded by the fact that neither Europe nor America have yet addressed the deeper connections between terrorism and the process of globalization

    Surface Instability in Windblown Sand

    Full text link
    We investigate the formation of ripples on the surface of windblown sand based on the one-dimensional model of Nishimori and Ouchi [Phys. Rev. Lett. 71, 197 (1993)], which contains the processes of saltation and grain relaxation. We carry out a nonlinear analysis to determine the propagation speed of the restabilized ripple patterns, and the amplitudes and phases of their first, second, and third harmonics. The agreement between the theory and our numerical simulations is excellent near the onset of instability. We also determine the Eckhaus boundary, outside which the steady ripple patterns are unstable.Comment: 23 pages, 8 figure

    Investigating coronal saturation and supersaturation in fast-rotating M-dwarf stars

    Get PDF
    At fast rotation rates, the coronal activity of G- and K-type stars has been observed to ‘saturate' and then decline again at even faster rotation rates - a phenomenon dubbed ‘supersaturation'. In this paper, we investigate coronal activity in fast-rotating M-dwarfs using deep XMM-Newton observations of 97 low-mass stars of known rotation period in the young open cluster NGC 2547 and combine these with published X-ray surveys of low-mass field and cluster stars of known rotation period. Like G- and K-dwarfs, we find that M-dwarfs exhibit increasing coronal activity with decreasing Rossby number NR, the ratio of period to convective turnover time, and that activity saturates at LX/Lbol≃ 10−3 for log NR < −0.8. However, supersaturation is not convincingly displayed by M-dwarfs, despite the presence of many objects in our sample with log NR < −1.8, where supersaturation is observed to occur in higher mass stars. Instead, it appears that a short rotation period is the primary predictor of supersaturation; P ≤ 0.3 d for K-dwarfs and perhaps P ≤ 0.2 d for M-dwarfs. These observations favour the ‘centrifugal stripping' model for supersaturation, where coronal structures are forced open or become radiatively unstable as the Keplerian corotation radius moves inside the X-ray-emitting coronal volum
    corecore