22 research outputs found
Conceptual Foundations of Development Departments of Physical Culture and Sports
В статье проанализированы стратегические цели и модель развития учебного структурного подразделении — кафедры физической культуры и спорта аграрного университета. Рассмотрены проблемные вопросы научной, учебно-методической, финансовой и других видов деятельности. Исследования, выполненные с применением методики SWOT-анализа, подтвердили актуальность и своевременность перспективного планирования и разработки программ в сфере физкультурно-спортивной работы в концепции развития университета.The article analyzes the strategic goals and development model of the educational structural unit — the Department of Physical Culture and Sports of the Agrarian University. The problematic issues of scientific, educational, methodological, financial and other activities are considered. The studies carried out using the SWOT analysis methodology confirmed the relevance and timeliness of long-term planning and development of programs in the field of physical culture and sports work in the university development concept
Cthrc1 Is a Positive Regulator of Osteoblastic Bone Formation
Bone mass is maintained by continuous remodeling through repeated cycles of bone resorption by osteoclasts and bone formation by osteoblasts. This remodeling process is regulated by many systemic and local factors.We identified collagen triple helix repeat containing-1 (Cthrc1) as a downstream target of bone morphogenetic protein-2 (BMP2) in osteochondroprogenitor-like cells by PCR-based suppression subtractive hybridization followed by differential hybridization, and found that Cthrc1 was expressed in bone tissues in vivo. To investigate the role of Cthrc1 in bone, we generated Cthrc1-null mice and transgenic mice which overexpress Cthrc1 in osteoblasts (Cthrc1 transgenic mice). Microcomputed tomography (micro-CT) and bone histomorphometry analyses showed that Cthrc1-null mice displayed low bone mass as a result of decreased osteoblastic bone formation, whereas Cthrc1 transgenic mice displayed high bone mass by increase in osteoblastic bone formation. Osteoblast number was decreased in Cthrc1-null mice, and increased in Cthrc1 transgenic mice, respectively, while osteoclast number had no change in both mutant mice. In vitro, colony-forming unit (CFU) assays in bone marrow cells harvested from Cthrc1-null mice or Cthrc1 transgenic mice revealed that Cthrc1 stimulated differentiation and mineralization of osteoprogenitor cells. Expression levels of osteoblast specific genes, ALP, Col1a1, and Osteocalcin, in primary osteoblasts were decreased in Cthrc1-null mice and increased in Cthrc1 transgenic mice, respectively. Furthermore, BrdU incorporation assays showed that Cthrc1 accelerated osteoblast proliferation in vitro and in vivo. In addition, overexpression of Cthrc1 in the transgenic mice attenuated ovariectomy-induced bone loss.Our results indicate that Cthrc1 increases bone mass as a positive regulator of osteoblastic bone formation and offers an anabolic approach for the treatment of osteoporosis
Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis
Collagen-producing cells maintain the complex architecture of the lung and drive pathologic scarring in pulmonary fibrosis. Here we perform single-cell RNA-sequencing to identify all collagen-producing cells in normal and fibrotic lungs. We characterize multiple collagen-producing subpopulations with distinct anatomical localizations in different compartments of murine lungs. One subpopulation, characterized by expression of Cthrc1 (collagen triple helix repeat containing 1), emerges in fibrotic lungs and expresses the highest levels of collagens. Single-cell RNA-sequencing of human lungs, including those from idiopathic pulmonary fibrosis and scleroderma patients, demonstrate similar heterogeneity and CTHRC1-expressing fibroblasts present uniquely in fibrotic lungs. Immunostaining and in situ hybridization show that these cells are concentrated within fibroblastic foci. We purify collagen-producing subpopulations and find disease-relevant phenotypes of Cthrc1-expressing fibroblasts in in vitro and adoptive transfer experiments. Our atlas of collagen-producing cells provides a roadmap for studying the roles of these unique populations in homeostasis and pathologic fibrosis
Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis
BACKGROUND: Invasive ductal and lobular carcinomas (IDC and ILC) are the most common histological types of breast cancer. Clinical follow-up data and metastatic patterns suggest that the development and progression of these tumors are different. The aim of our study was to identify gene expression profiles of IDC and ILC in relation to normal breast epithelial cells. METHODS: We examined 30 samples (normal ductal and lobular cells from 10 patients, IDC cells from 5 patients, ILC cells from 5 patients) microdissected from cryosections of ten mastectomy specimens from postmenopausal patients. Fifty nanograms of total RNA were amplified and labeled by PCR and in vitro transcription. Samples were analysed upon Affymetrix U133 Plus 2.0 Arrays. The expression of seven differentially expressed genes (CDH1, EMP1, DDR1, DVL1, KRT5, KRT6, KRT17) was verified by immunohistochemistry on tissue microarrays. Expression of ASPN mRNA was validated by in situ hybridization on frozen sections, and CTHRC1, ASPN and COL3A1 were tested by PCR. RESULTS: Using GCOS pairwise comparison algorithm and rank products we have identified 84 named genes common to ILC versus normal cell types, 74 named genes common to IDC versus normal cell types, 78 named genes differentially expressed between normal ductal and lobular cells, and 28 named genes between IDC and ILC. Genes distinguishing between IDC and ILC are involved in epithelial-mesenchymal transition, TGF-beta and Wnt signaling. These changes were present in both tumor types but appeared to be more prominent in ILC. Immunohistochemistry for several novel markers (EMP1, DVL1, DDR1) distinguished large sets of IDC from ILC. CONCLUSION: IDC and ILC can be differentiated both at the gene and protein levels. In this study we report two candidate genes, asporin (ASPN) and collagen triple helix repeat containing 1 (CTHRC1) which might be significant in breast carcinogenesis. Besides E-cadherin, the proteins validated on tissue microarrays (EMP1, DVL1, DDR1) may represent novel immunohistochemical markers helpful in distinguishing between IDC and ILC. Further studies with larger sets of patients are needed to verify the gene expression profiles of various histological types of breast cancer in order to determine molecular subclassifications, prognosis and the optimum treatment strategies
Elevated Plasma Levels of the Pituitary Hormone Cthrc1 in Individuals with Red Hair but Not in Patients with Solid Tumors
An increasing number of studies report that Cthrc1 is expressed in various cancer cells. The present study sought to identify which cells in tumors and remodeling tissues express Cthrc1 and investigate the range of circulating human Cthrc1 levels in health and disease.Highly specific monoclonal antibodies were generated to detect Cthrc1 by ELISA in plasma and in tissues by immunohistochemistry. In human colon, gastric, breast, endometrial, pancreatic, kidney, lung and skin cancer, Cthrc1 was expressed by activated stromal cells and not the cancer cells themselves. Similarly, conditions evoking tissue remodeling, such as wound repair or angiotensin II-mediated hypertension, induced Cthrc1 expression in interstitial and adventitial fibroblasts and perivascular stromal cells. Levels of Cthrc1 in plasma from healthy subjects were near the lower detection limit except for individuals with red hair, who had up to several hundred fold higher levels. Elevated Cthrc1 was also found in patients with diabetes, inflammatory conditions, and infections, but not solid tumors. Transgenic mouse studies suggested that Cthrc1 expression by stromal cells does not contribute to circulating levels. In human pituitaries, Cthrc1 was expressed in the anterior and intermediate lobes with unencapsulated Cthrc1 accumulations typically surrounded by chromophobe cells.We identify Cthrc1 as a marker for activated stromal cells. Cthrc1 is a pituitary hormone with significantly elevated levels in subjects carrying variant alleles of the melanocortin-1 receptor as wells as in patients with inflammatory conditions