24 research outputs found

    Microfibrous TiO2 supported photocatalysts prepared by metal-organic chemical vapor infiltration for indoor air and waste water purification

    Get PDF
    The photocatalytic degradation of gaseous (toluene) and aqueous (imazapyr, malic acid, orange G) pollutants over TiO2 supported photocatalysts is investigated using a batch reactor. A strong influence of the microstructural characteristics of TiO2 on the decomposition kinetics of the pollutants is found. Well crystallized, porous TiO2-anatase films grown under low pressure at 400–500 8C by MOCVD on glass plates and by MOCVI on glass micro-fibers are the best heterogeneous photocatalysts, showing the highest activity. We demonstrate a good control of these characteristics by choosing the deposition parameters. Achieving conformal coverage (i.e. good infiltration) of glass micro-fibers by the TiO2 thin films has also a strong influence on the photocatalytic activity. A correlation between optimal infiltration, film microstructure and photocatalytic activity is established. Strong similarities between optimal photocatalytic decomposition rate in gas and liquid phase were found with respect to the film microstructure and the photocatalyst mass. The total mineralization of the toluene was prevented because of the deactivation of the photocatalyst surface. However the reactivation of the photocatalyst was achieved by UV irradiation under oxygen stream. This allows a long-term use of the photocatalyst

    Why inorganic salts decrease the TiO

    Get PDF

    Ultradispersed Mo/TiO2 catalysts for CO2 hydrogenation to methanol

    Get PDF
    Mo/TiO2 catalysts with atomic dispersion of molybdenum appear active and stable in the gas-phase hydrogenation of CO2. A comparison between various titania materials shows a crucial effect of the support surface structure on the methanol yield. Molybdenum supported at low coverage on rutile titania nanorods is the most active and methanol-selective system. From catalyst characterization by aberration-corrected scanning transmission electron microscopy, near-ambient pressure X-ray photoelectron spectroscopy, diffuse reflectance UV-vis spectroscopy, and temperature-programmed techniques, we suggest that the most active catalysts for methanol production involve ultradispersed molybdate species with high reducibility and strong interaction with the rutile support.Peer ReviewedPostprint (author's final draft

    Influence of Pt particle size and reaction phase on the photocatalytic performances of ultradispersed Pt/TiO2 catalysts for hydrogen evolution

    Get PDF
    Pt/TiO2 photocatalysts were prepared by incipient wetness impregnation followed by oxidative and/or reductive thermal treatments. By varying the TiO2 form (commercial P25 and P90, and homemade shape-controlled), the Pt loading (0.2-1 wt% Pt) and the treatment temperature (200-600°C), it has been possible to tune the Pt cluster size. An increase in the ethanol dehydrogenation rate under ultraviolet irradiation as the Pt cluster average diameter decreases from 17 to 9 Å is suggested by our data. Whereas pre-reduction in H2 leads to Pt clusters, pre-calcination in air leads to atomically dispersed cationic Pt species. The former are more active and stable than the latter. This conclusion is valid both in gas- and liquid-phase reaction conditions for given TiO2 type and Pt loading. The activity results are consistent with a recent theoretical work showing that 1 nm is an optimal Pt cluster size for favoring both photoelectron transfer from TiO2 to Pt and hydrogen coupling on Pt. The best catalytic performance is obtained in gas phase for pre-reduced 0.2 wt% Pt/TiO2-P90, with an H2 production rate of 170 mmol h-1 gcat-1.Postprint (author's final draft

    Titania - Supported transition metals sulfides as photocatalysts for hydrogen production from propan-2-ol and methanol

    No full text
    International audienceA series of transition metals sulfides deposited on anatase titania (MSx/TiO2) were prepared by precipitation of transition metals salts with thioacetamide in aqueous medium under reflux. The solids were characterized by XRD, XPS, temperature programmed reduction and transmission electron microscopy. The properties of as obtained catalysts were compared for the photocatalytic hydrogen evolution reaction (PHER) in pure methanol and water-isopropanol mixture. The sequences of PHER activity were compared with electrochemical HER and thiophene hydrodesulfurization (HDS) activity of the corresponding sulfides prepared by the same technique. For PHER, in both alcohols the most active photocatalysts contain hydrogenating sulfides of Co and Ru. However the PHER activity does not follow the same trend as electrocatalytic HER and thiophene HDS. Some sulfides, such as HgS or CuS, show poor activity in HDS and electrocatalytic HER, but have the PHER activity comparable with that of the best samples. This difference suggests that the PHER rate is not merely related to the hydrogen activating properties of the co-catalyst, but is enhanced by the transfer of photogenerated electrons from TiO2 towards the sulfide. The ranking of the co-catalysts and the PHER activity depend also on the nature of the alcohol molecule, the overall PHER rates in water-isopropanol mixture being lower than in methanol

    Photocatalytic production of H2 is a multi-criteria optimization problem: case study of RuS2/TiO2

    No full text
    International audienceMany parameters influence the photocatalytic production of H 2. Identifying and quantifying them is necessary for correct comparison of photocatalysts and right understanding of involved mechanism. In this work, we studied the photocatalytic dehydrogenation of isopropanol with titania-supported ruthenium disulfide. We studied the influence of seven parameters on the photocatalytic activity: the temperature, the composition of the reactive mixture, the mass of the photocatalyst, the flux and the energy of the incident photons, the co-catalyst loading and the nature of the support. Their influence was studied, not only on the rate of hydrogen production (or photon yield) but also on the apparent activation energy and on the pre-exponential factor, deduced from an Arrhenius law. The photon yield as a function of the co-catalyst loading show an optimum of activity. A 6.9 % photon yield was obtained at 0.84 wt% and = 3.65. The rate-determining step for the photocatalytic dehydrogenation of the isopropanol with RuS 2 /TiO 2 is, at optimal conditions, the electron transfer from TiO 2 to RuS 2. The latter is not favored because of the band diagrams of RuS 2 and TiO 2. The electron transfer can be optimized working with incident photons having a higher energy, thanks to a hot carrier effect observed in RuS 2 /TiO 2
    corecore