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Abstract 

 Mo/TiO2 catalysts with high molybdenum dispersion appear active and stable in the gas-

phase hydrogenation of CO2. The comparison between various titania materials shows a crucial 

effect of the support nature on the methanol yield. Molybdenum supported on rutile titania 

nanorods is the most active and methanol-selective system. The catalysts were investigated by 

aberration-corrected scanning transmission electron microscopy, near-ambient pressure X-ray 

photoelectron spectroscopy… Monomeric and partially reduced Mo oxo species are suspected 

to be the active centres. 

 

Introduction 

 Due to environmental concerns, the reduction of greenhouse gas emissions has become 

mandatory. In this context, promising approaches for the valorisation of CO2 have been 

developed, allowing the synthesis of value-added chemicals such as urea, salicylic acid, cyclic 

carbonate and polypropylene carbonate at the laboratory scale.1–3 The most promising 

valorisation strategy consists in the transformation of effluent CO2 through catalytic 

hydrogenation,4–7 leading to valuable products such as carbon monoxide, hydrocarbons and 

oxygenates.8,9 Methanol, a platform chemical with high interest in the production of fuels and 

plastics,10,11 is industrially produced from syngas (CO and H2) in the presence of a Cu/ZnO/Al2O3 

catalyst at 5-10 MPa and 250-300 °C. Researches on CO2 hydrogenation to methanol have 

mostly focused on this system, for understanding and optimising its catalytic performances.12–

18 However, this catalyst is pyrophoric, and a serious threat exists in the next decades for zinc 

availability.19 Moreover, the generation of water as a by-product of CO2 hydrogenation induces 

ZnO agglomeration, Cu oxidation and sintering, leading to catalyst deactivation.20,21 Hence, it is 

desirable to find alternative catalysts with enhanced performances.22–24 This includes not only 

the catalyst stability but also its activity and selectivity to methanol.25 



 Ultradispersed metal-based catalysts, i.e. single-atom catalysts (SACs) or subnanometric 

cluster-based catalysts,26 are an attractive new class of materials which potentially offer 

maximum atom-efficiency and specific catalytic properties.27–30 A large fraction of SAC studies 

has focused on noble metals, with a view to cost reduction. However, the stabilization of single 

noble-metal atoms on oxides is challenging because of their tendency to aggregation.26,31–33  

 Molybdenum-based catalysts are widely used in petroleum refining, and catalyze syngas 

conversion to alcohols.34 Mo has a half-filled d-electron shell and a variable valence state, which 

makes this oxophillic element suitable for tuning the catalytic performance through 

coordination engineering.35 Non-precious catalysts containing Mo-based species supported on 

TiO2 (MoOx/TiO2, MoS2/TiO2, etc.) are well-known for photocatalysis,36 as well as 

thermocatalytic oxidation37,38 and hydrodesulfurization39–41 reactions. While CO and CO2 

hydrogenation reactions were carried out over Mo/TiO2,42–44 this system was found inefficient. 

Shimizu’s group recently reported that the addition of a noble metal such as Pt is mandatory 

to promote a 30 wt% Mo/TiO2-P25 sample for the CO2-to-methanol reaction.44 

 Herein, we disclose the unexpected CO2 hydrogenation performances of selected low wt% 

Mo/TiO2 catalysts. A broad range of TiO2 materials, Mo loadings and pretreatment conditions 

were studied to compare their impacts on CO2 conversion activity and selectivity to methanol.  

 

Experimental section 

Catalyst preparation  

 The TiO2 samples, the molybdenum precursor (Aldrich, 99.98% trace metals basis) and the 

reference Cu/ZnO/Al2O3 catalyst (Thermo Fisher) were used without specific treatment. For 

titania supports, DT51D (>99.5%) and PC500 (>85%) were purchased from Tronox, P25 and P90 

(>99.5%) were purchased from Evonik Aeroxide, and RL11A (>99.5%) was purchased from 

Solvay. 



 In a typical preparation, 5 g of TiO2, an appropriate amount (depending on the target Mo 

loading) of Mo7O24(NH4)6.4H2O and 60 mL of deionised water were stirred for 2 h in a round 

bottom flask. The mixture was dried in a rotary evaporator at 60 °C, and the resulting powder 

was treated in a flow fixed-bed reactor under H2 (40 mL/min) for 2 h at 500 °C (5 °C/min).  

 

Catalytic testing 

 The catalytic tests were performed using a straight stainless-steel flow fixed bed reactor 

(internal diameter 7 mm), heated with a tubular oven. Gas flows were controlled by Brooks 

Instruments flowmeters and analysed by an Inficon Fusion micro gas chromatograph equipped 

with molecular sieve and RT-Q-Bond modules. The temperature program for the RT-Q-Bond 

was 60 °C for 70 s, then 230 °C for 120 s (2.5 °C/min). The total pressure was set to 30 bar using 

a Tescom ER5000 electropneumatic PID controller driving a Tescom membrane backpressure 

regulator. A heating system was set up to keep the temperature above 70 °C in the gas lines in 

order to avoid condensation. Prior to catalytic tests the as-prepared catalysts were treated in 

situ in the catalytic reactor under H2 (40 mL/min) for 2 h (5 °C/min) at atmospheric pressure in 

the 450-700 °C range (standard value 450 °C). The catalytic experiments were conducted with 

an H2/CO2/N2 mixture of 30/10/10 mL/min and 400 mg of catalyst, leading to a gas hourly space 

velocity (GHSV) of 7500 mL.g-1.h-1. The following standard temperature sequence was used for 

the catalytic tests: from RT to 200 °C at 5 °C/min, then 200 °C to 300 °C at 0.25 °C/min.  

 Conversion of CO2 (χCO2), selectivities to product P (SP), methanol (MeOH) production 

turnover frequency (TOFMeOH) and space-time yield (STYMeOH) were calculated as follows, with 

QCO2
in, Qi

out, nMo, MMeOH, and mcat representing the flow rate of CO2 at the reactor inlet, the flow 

rate of product i at the reactor outlet, the molar amount of Mo, the molar mass of methanol, 

and the catalyst mass, respectively. For TOF calculations, all Mo atoms were considered as 

exposed to the gas phase (100% dispersion). 
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Catalyst characterisation 

 Scanning transmission electron microscopy (STEM) with high-angle annular dark field 

(HAADF) detection was performed on a Jeol Cold FEG NeoARM (point-to-point resolution 0.78 

Å, images in Fig. 1) and a Jeol 2100F (point-to-point resolution 1.1 Å, all other images), both 

equipped with a Cs-corrected condenser at the probe level and operated at 200 kV. For sample 

preparation, the powder was crushed and dispersed in ethanol through ultrasonication, 

dropped onto a holey carbon-coated 200 mesh Cu grid, and dried by a lamp. To avoid 

contamination during analysis and remove any residual carbon, the samples were Ar plasma-

cleaned for 20 s (Plasma Prep 5, GaLa Instrumente). No filtering was applied on the STEM 

images.  

 NAP-XPS analysis was conducted at the CIRCE beamline at ALBA synchrotron, using a NAPP 

endstation designed by SPECS GmbH in collaboration with CIRCE beamline. All spectra reported 

here were acquired combining UHV and H2/CO2 environments with the sample held at RT, 200 

°C, 275 °C, and 350 °C while the catalyst run at 2 mbar with a 3/1 ratio of H2/CO2 mixture. Each 

sample was previously reduced in situ at 400 °C under 2 mbar of H2. The catalyst in the form of 

powder was deposited onto an Ag foil previously cleaned to reduce charge effects and for XPS 

calibration purposes (ref-DOI: 10.1039/C8CP04614J). The spectra are all referenced to the Ag 

Fermi level, measured after every spectrum, to determine absolute binding energies. A Photon 

energy of 400 eV was used to probe Mo 3d core-level with high photoionization cross-section 

under NAP conditions. Sample degradation due to X-ray radiation was not observed. NAP-XPS 

analysis revealed a well-resolved Mo 3d core level. Each spectrum was decomposed into a 

combination of Voight functions, each with an overall full-width at half maximum (FWHM) of 

approximately 1.6 eV. 

 



 Hydrogen-assisted temperature programmed reduction (H2-TPR) was performed using a U-

shaped quartz reactor (internal diameter 4 mm). Prior to the TPR, the catalyst (100 mg) was 

pretreated under He (30 mL/min) at 250 °C (15 °C/min) for 30 min. After return to room 

temperature, the catalyst was heated at 15 °C/min to 850 °C under 30 mL/min of 1% H2/He. 

The outlet gas mixture was analysed by an Omnistar mass spectrometer from Pfeiffer Vacuum. 

The baseline was subtracted to the resulting H2 signal, which is quantified using 1% H2/He as 

reference value.  

 CO2 temperature-programmed desorption (TPD) measurements were conducted on a 

custom-made apparatus using a U-glass tubular reactor loaded with 100 mg of catalyst. After 

an in situ reduction for 2 h at 450 °C (5 °C/min) under 40 mL/min of H2, the powder was 

desorbed at 450 °C under N2 (100 mL/min) for 4 h. After cooling down to 30 °C, the catalyst 

was exposed to 5% CO2 in N2. Then, the reactor was flushed for 30 min under N2 before the 

temperature was increased from 30 °C to 450 °C (5 °C/min) to desorb CO2. The outlet gases 

were analysed by infrared spectroscopy and the CO2 quantity was determined from the 

asymmetric stretching bands at 2450-2100 cm-1 using a calibration curve. 

 X-ray fluorescence (XRF) analysis was performed using an Epsilon 4 spectrometer from 

Malvern Panalytical. The generator was used at 50 kV and 60 µA under air atmosphere. Data 

were collected at the Mo Kα energy level (17.44 keV) using a 3-point calibration curve verified 

by inductively coupled plasma – optical emission spectroscopy (ICP-OES). 

 The specific surface areas were determined by N2 volumetry through a 5-points BET method 

using a Micrometrics ASAP 2020. 

 

Results and discussion 

The catalysts were prepared by conventional wet impregnation followed by a reductive 

treatment (see Experimental section) The samples, listed in Table 1, are labelled as <Mo loading 

in wt%>Mo/<TiO2 material name>-R<in situ reduction temperature>. For example, 



3Mo/DT51D-R450 denotes a catalyst containing 3 wt% Mo supported on TiO2 DT51D (anatase) 

and reduced in situ at 450 °C. XRF measurements (Table 1) show that the Mo loadings were 

found close to the target values (0.1 to 10 wt%, standard loading 3 wt%) within a relative 

accuracy of 20%.  

 

Table 1 – Characteristics of the Mo/TiO2 catalysts used in this study. 

Sample name 
Specific surface 

area (m2/g)a 

TiO2 phase 

composition 

(anatase/rutile)b
 

Mo loading 

(wt%)c 

0.1Mo/DT51D 

0.3Mo/DT51D 

78 100%/0% 

0.1 

0.2 

1Mo/DT51D 1.0 

3Mo/DT51D 2.9 

10Mo/DT51D 8.3 

3Mo/PC500 148 100%/0% 3.4 

3Mo/P90 105 90%/10% 3.3 

3Mo/P25 61 80%/20% 2.8 

3Mo/RL11A 12 0%/100% 2.6 

1Mo/RNR 
44 0%/100% 

1.0 

3Mo/RNR 2.9 

a Determined by N2 volumetry through the BET method; b Furnisher values, except for RNR: determined from X-ray 

diffraction; c Determined by XRF spectroscopy (standard deviation 0.05 wt%). 

 

 Figure 1 displays representative STEM-HAADF micrographs of 3Mo/DT51D and 3Mo/RNR 

samples. The images suggest that Mo is atomically dispersed at the surface of TiO2, i.e. it is 

present as a mixture of single-atoms and subnanometric clusters. The latter correspond to 2D 



oxomolybdate clusters, as previously reported in the literature.38,45–47 STEM micrographs of the 

other 3 wt% Mo/TiO2 catalysts (Figure S1) show a similarly high dispersion of Mo. The relative 

intensities represented in Figures 1C and 1F were determined along the yellow lines in Figure 

1B for anatase and 1E for rutile, respectively. Mo atoms are seen to preferentially adsorb at Ti 

cation positions on both anatase and rutile. This is consistent with previous works on the 

epitaxial growth of molybdenum nanostructure on titania.45,46,48–50 

 

 

Figure 1 - Representative aberration-corrected STEM-HAADF micrographs. A, B: 3Mo/DT51D; D, E: 3Mo/RNR. Arrows and 

circles in A and D show single Mo atoms and Mo clusters, respectively. C, F: Intensity representation of the 2 nm2 yellow 

square represented in B and E, respectively. The white stars indicate the Mo atoms. 

  

A summary of catalytic properties for the whole set of samples is presented in Table 2. In order 

to compare the different materials, conversion, selectivity as well as methanol TOF and STY 

were determined as described in the Experimental section. 

 



Table 2 - CO2 hydrogenation performances of Mo/TiO2 samples at 275 °C under 30 bar of H2/CO2/N2 (3/1/1), GHSV = 7500 

mL.g-1
.h-1. 

a Samples in situ prereduced at 450 °C except when mentioned otherwise; b CO represents the complement to 100%. 

 

 

From these data, it appears that all the samples except Mo/PC500 are active for CO2 

hydrogenation. The main product is always CO (along with water, which cannot be accurately 

Sample  

CO2 

conversion 

(%) 

CH4 

selectivity 

(%)b 

MeOH 

selectivity 

(%)b 

DME 

selectivity 

(%)b 

MeOH TOF 

(molMeOH. 

molMo
-1.h-1) 

MeOH STY 

(gMeOH. 

kgcat
-1.h-1) 

0.1Mo/DT51D 0.9 5.2 4.8 4.8 2.81 0.94 

0.3Mo/DT51D 3.0 5.9 5.1 2.5 3.20 3.20 

0.3Mo/DT51D 
-R600 

1.7 0 4.6 1.7 1.70 1.70 

1Mo/DT51D 5.2 12.0 10.2 3.2 3.57 11.31 

3Mo/DT51D 
as prepared 

1.7 5.1 23.3 5.9 0.88 8.22 

3Mo/DT51D 4.8 8.7 6.6 3.2 0.71 6.84 

3Mo/DT51D 
-R600 

10.8 6.1 5.7 1.6 1.33 12.89 

3Mo/DT51D 
-R700 

3.8 3.2 15.1 0.7 1.24 12.00 

10Mo/DT51D 3.3 9.5 4.9 2.2 0.12 3.41 

3Mo/PC500 < 0.1 - - - - - 

3Mo/P90 4.0 10.5 3.7 1.0 0.28 3.09 

3Mo/P25 2.6 10.0 5.4 3.1 0.32 3.01 

3Mo/RL11A 1.5 4.4 17.8 0 0.57 5.68 

1Mo/RNR 7.6 23.1 10.5 1.1 5.16 16.87 

3Mo/RNR 6.8 9.3 24.2 1.3 3.61 34.95 

50Cu/ZnO/ 
Al2O3 

20.7 0 32.3 0 0.56 141.06 



quantified), followed by methane or methanol depending on the support oxide, then dimethyl 

ether (DME). Thus, the main reaction pathway on molybdenum-based catalysts remains CO2 

reduction to CO through the reverse water-gas shit reaction as described by several teams 

using molybdenum carbide, MoOx/Ti3AlC2 or molybdenum doping Fe/Al2O3 and Cu/FAU.51–55  

Figure 2 allows comparing the titania supports in terms of CO2 hydrogenation activity and 

selectivity to methanol at a constant Mo loading of 3 wt%. The CO2 conversion at 275 °C varies 

from less than 0.1% for PC500 to 6.8% for RNR. The products distribution also strongly depends 

on the TiO2 nature. In particular, the selectivity to methanol ranges from 3.7% for P90 to 24.2% 

for RNR. As a result, the STY reaches 35 g of methanol per kg of catalyst per hour, versus 141 

gMeOH.kgcat
-1.h-1 for the highly Cu-loaded (50 wt%) industrial Cu/ZnO/Al2O3 methanol-synthesis 

catalyst evaluated in the same conditions (Figure S2).  

The results of typical experiments at variable temperature are reported in Figure S3 for 

3Mo/RNR and 3Mo/DT51D, the two most active systems. CO2 conversion as well as selectivities 

to CH4 and CO increase with the temperature, while the selectivity to methanol decreases. 

While the 3Mo/RNR catalyst reaches a methanol selectivity of 50% at 200 °C, a climax of 23 % 

is obtained at 220 °C on 3Mo/DT51D, with CO as the main by-product for the two catalysts. 

These two catalysts exhibit stable catalytic performance for 40 h (Figure S4).  

Notably, these performances correlate neither with the specific surface area of TiO2 (Figure S5), 

nor with the titania phase composition as anatase-pure DT51D and rutile-pure RNR are the 

supports that promote the highest activities.  
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Figure 2 - Effect of TiO2 nature on product yields and methanol selectivity for 3Mo/TiO2 catalysts at 275 °C under 30 bar of 

H2/CO2/N2 (3/1/1), GHSV = 7500 mL.g-1
.h-1. 

  

Synchrotron-based NAP-XPS was performed to tentatively clarify the atomic origins of the 

support-dependent performances in terms of Mo oxidation state. The experiments were 

carried out on 3Mo/RNR, 3Mo/P25, and 3Mo/DT51D under conditions of in situ reduction (H2, 

400 °C) and reaction (75 vol% H2 + 25 vol% CO2, 200-350 °C) at 2 mbar total pressure. Figure 3a 

shows Mo 3d core-level spectra recorded of 3Mo/DT51D and 3Mo/RNR samples under H2-CO2 

mixture at 275 °C. The XPS results obtained for all the samples and conditions are presented in 

Figure S6 and Table S1, and synthetized in Figure 3b. A clear impact of the nature of the TiO2 

support on the Mo oxidation states distribution is observed. As a matter of fact, Mo is more 

reduced on rutile (RNR) than on anatase (DT51D), the dominant states being MoV and MoVI, 

respectively. Mixed-phase P25 exhibits an intermediate MoV/MoVI ratio. Whereas the state of 

Mo on DT51D hardly changes, an overall oxidation of Mo occurs on RNR and P25 when 

switching from reduction to reaction conditions. This is ascribed to CO2 and/or H2O acting as 

oxidising agents,56–58 and to the more labile oxygen environment of Mo on rutile than on 



anatase due to higher reducibility of rutile than anatase.59 Under reaction conditions, Mo/RNR 

is the only catalyst containing MoIV species. The latter may be at the origin of the significant 

methanol production activity exhibited by Mo/RNR (Fig. 2). However, the intermediate 

oxidation state of Mo/P25 with respect to DT51D and RNR counterparts does not correlate 

with an intermediate catalytic performance. Moreover, the NAP-XPS pressure conditions (2 

mbar total pressure in all cases) are obviously not representative of those employed in the 

laboratory catalytic reactor (1 bar of H2 for reduction, and 18 bar H2 + 6 bar CO2 for reaction). 

Thus, the measured Mo state differences between the supports should be considered 

qualitatively, and they are not sufficient to explain the catalytic data. 

  

 

Figure 3 – A: Mo 3d NAP-XPS analysis at 275 °C under 2 mbar of a 3/1 H2/CO2 mixture on 3Mo/RNR (top) and 3Mo/DT51D 

(bottom). B: Mo oxidation state distribution in 3 wt% Mo supported on DT51D, P25 and RNR TiO2 determined from NAP-XPS 

(Mo 3d), during in situ reduction at 400 °C (R400), and exposure to CO2/H2 reactant mixture (3/1) at 200 °C (M200), 275 °C 

(M275) and 350 °C (M350). 

  

In order to gain insight into the reducibility of molybdenum on these three TiO2 supports, H2-

TPR experiments were carried out, as shown in Figure 4. On the one hand, the amount of H2 

consumed per Mo atom increases with the fraction of rutile phase (i.e. from DT51D to RNR), 



consistently with the NAP-XPS data showing the lowest overall oxidation state for Mo on RNR. 

On the other hand, the TPR peak position varies from 320 °C to 424 °C and 575 °C for RNR, 

DT51D and P25, respectively. This peak can be assigned to the reduction of well-dispersed 

octahedral MoVI species.60–62 The last reduction event occurring above 800 °C can be attributed 

to tetrahedral Mo species63 but is not relevant to our catalytic conditions. 

While no significant H2 consumption was observed for the bare supports, a continuous 

consumption occurs after the main reduction event, which can be explained by the slow 

reduction of polyoxomolybdate species.62 The higher temperature necessary to reduce the Mo 

species on P25 is above the standard in situ reduction temperature used prior to our catalytic 

tests. This could be at the origin of the lower catalytic activity of this catalyst with respect to 

3Mo/DT51D and 3Mo/RNR, in spite of the intermediate Mo oxidation state determined from 

NAP-XPS.  Moreover, the higher reducibility of Mo on RNR could explain its superior catalytic 

performance. 
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Figure 4 – H2-TPR traces for 3 wt% Mo supported on RNR, DT51D and P25 titania. The temperatures of maximum 

consumption and the H2-to-Mo molar ratios, i.e. area of the TPR peak normalised over the amount of Mo, are indicated. The 

temperature of in situ reduction pretreatment employed for catalytic tests (450 °C) is displayed with a vertical dotted line. 

  

The effect of the in situ reduction temperature (450-700 °C) was investigated for 3Mo/DT51D. 

Figure S7 shows that the catalyst is already slightly active in the absence of in situ pretreatment. 

After in situ reduction at 450 °C, CO2 conversion is much higher, and presents a maximum after 

treatment at 600 °C. However, the selectivity to methanol shows an opposite behaviour, i.e. a 

minimum for the R600 sample. The increase in conversion being superior to the decrease in 

selectivity, the methanol TOF (1.4 h-1) is maximal after reduction at 600 °C. As shown by the 

STEM images in Figure S8, 3Mo/DT51D seems structurally stable at 450 °C, with no obvious 

effect of the in situ treatment. However, Mo sintering occurred for the R600 sample, as 

revealed by the presence of MoOx nanoparticles of 2.0 ± 0.5 nm in size. A reducing treatment 

at 700 °C leads to even larger particles (2.7 ± 0.5 nm).  

To discriminate the effect of in situ pre-reduction from that of Mo dispersion, a Mo/DT51D 

catalyst with a Mo loading as low as 0.3 wt% was tested after in situ reduction at 450 °C or 600 



°C. Unlike for 3Mo/DT51D (Figure S7), the activity and methanol selectivity of 0.3Mo/DT51D 

both decrease when the reduction temperature increases. For the latter, the absence of 

nanoparticles demonstrated using STEM (Figure S9) suggests that the increase in conversion 

measured for 3Mo/DT51D-R600 is more related to the formation of nanoparticles than to a 

lower oxidation state. The low conversion obtained for 3Mo/DT51D-R700 is may be due to the 

excessive enlargement of Mo nanoparticles or/and a possible partial sintering of TiO2 leading 

to a loss of specific surface area.64 

  

 Finally, the impact of the Mo loading (0.1-10 wt%) on the catalytic performance was 

investigated for Mo/DT51D-R450. The STEM images in Figure 5A show that Mo remains well-

dispersed on titania even at high coverage, though Mo clusters (polyoxomolybdates) gradually 

replace single Mo atoms (monoxomolybdates) as the Mo coverage increases. Figure 5B shows 

an optimum in CO2 conversion (5.2%) and methanol selectivity (10.2%) for 1 wt% Mo at 275 °C. 

This corresponds to a maximal methanol TOF of 3.6 h-1. 

  

 



 

Figure 5 - A: Representative aberration-corrected STEM-HAADF micrographs of 0.1-10 wt% Mo/DT51D catalysts. B: Effect of 

Mo loading on CO/MeOH/CH4/DME yields and methanol STY for 0-10 wt% Mo/DT51D-R450 at 275 °C under 30 bar of 

H2/CO2/N2 (3/1/1), GHSV = 7500 mL.g-1
.h-1. C: CO2-TPD traces for 100 mg of 0-10 wt% Mo/DT51D samples. The total amount 

of desorbed CO2 is indicated. 

 The decrease in CO2 conversion below 1 wt% Mo is ascribed to a limiting number of active 

sites. However, the MeOH TOF remains nearly stable in the 0.1-1 wt% Mo loading range, which 

is assigned to the presence of mainly isolated oxomolybdate species on these three catalysts. 

The CO2 TPD curves in Figure 5C show that the amount of CO2 (adsorbed on the catalyst at RT 

and desorbed in the RT-450 °C range) decreases as the Mo loading increases, and vanishes to 

almost zero for 3 wt% Mo and above. We attribute the impact of Mo loading on the catalytic 

properties to a balance between the amount of basic sites on TiO2 available for CO2 adsorption 

and that of Mo centers enabling CO2 conversion. A similar methanol activity tendency is 

observed for Mo/RNR with a MeOH TOF at 275 °C reaching 5.2 h-1 for the 1 wt% catalyst (Figure 

S10). Again, we ascribe this behaviour to the higher catalytic methanol production performance 

of isolated oxomolybdate species.  

 

Conclusion 



 

 In conclusion, we have demonstrated the possibility to obtain efficient catalysts based on 

titania-supported ultradispersed molybdenum species for CO2 hydrogenation to methanol. The 

TiO2 support type, as well as the Mo loading and the reductive pretreatment temperature, 

substantially impact the catalytic activity and selectivity. In particular, a low Mo coverage 

corresponding to ca. 1 wt% Mo may provide an optimal compromise, in terms of methanol 

yield, between the number of active sites and their isolation. The active sites are probably 

associated to Mo isolated oxo species in partial oxidation states. The highest performance was 

measured for a titania support consisting of rutile nanorods, followed by commercial anatase. 

Forthcoming studies on the Mo/TiO2 system will rely on advanced operando investigations and 

theoretical modelling. They will aim at understanding how the Mo atom coordination and 

oxidation state, as well as the titania surface structure and acid-base properties (including the 

presence of TiO2 vacancies65,66) affect the catalytic properties. A better knowledge of the 

structure-function relationships will enable further improvement of the catalysts reported 

herein. This study represents a first step toward the development of new cost-efficient 

alternatives to Cu-Zn-based catalysts for CO2 hydrogenation to methanol. 
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