469 research outputs found

    Comment on Mie Scattering from a Sonoluminescing Bubble with High Spatial and Temporal Resolution [Physical Review E 61, 5253 (2000)]

    Full text link
    A key parameter underlying the existence of sonoluminescence (SL)is the time relative to SL at which acoustic energy is radiated from the collapsed bubble. Light scattering is one route to this quantity. We disagree with the statement of Gompf and Pecha that -highly compressed water causes the minimum in scattered light to occur 700ps before SL- and that this effect leads to an overestimate of the bubble wall velocity. We discuss potential artifacts in their experimental arrangement and correct their description of previous experiments on Mie scattering.Comment: 10 pages, 2 figure

    Sonoluminescence: Nature's Smallest BlackBody

    Full text link
    The Spectrum of the light emitted by a sonoluminescing bubble is extremely well fit by the spectrum of a blackbody. Furthermore the radius of emission can be smaller than the wavelength of the light. Consequences, for theories of sonoluminescence are discussed.Comment: 8 pages, 3 Figure

    Nanoscale Heat Transfer from Magnetic Nanoparticles and Ferritin in an Alternating Magnetic Field

    Get PDF
    Recent suggestions of nanoscale heat confinement on the surface of synthetic and biogenic magnetic nanoparticles during heating by radio frequency-alternating magnetic fields have generated intense interest because of the potential utility of this phenomenon for noninvasive control of biomolecular and cellular function. However, such confinement would represent a significant departure from the classical heat transfer theory. Here, we report an experimental investigation of nanoscale heat confinement on the surface of several types of iron oxide nanoparticles commonly used in biological research, using an all-optical method devoid of the potential artifacts present in previous studies. By simultaneously measuring the fluorescence of distinct thermochromic dyes attached to the particle surface or dissolved in the surrounding fluid during radio frequency magnetic stimulation, we found no measurable difference between the nanoparticle surface temperature and that of the surrounding fluid for three distinct nanoparticle types. Furthermore, the metalloprotein ferritin produced no temperature increase on the protein surface nor in the surrounding fluid. Experiments mimicking the designs of previous studies revealed potential sources of the artifacts. These findings inform the use of magnetic nanoparticle hyperthermia in engineered cellular and molecular systems

    Transport coefficients from the Boson Uehling-Uhlenbeck Equation

    Full text link
    We derive microscopic expressions for the bulk viscosity, shear viscosity and thermal conductivity of a quantum degenerate Bose gas above TCT_C, the critical temperature for Bose-Einstein condensation. The gas interacts via a contact potential and is described by the Uehling-Uhlenbeck equation. To derive the transport coefficients, we use Rayleigh-Schrodinger perturbation theory rather than the Chapman-Enskog approach. This approach illuminates the link between transport coefficients and eigenvalues of the collision operator. We find that a method of summing the second order contributions using the fact that the relaxation rates have a known limit improves the accuracy of the computations. We numerically compute the shear viscosity and thermal conductivity for any boson gas that interacts via a contact potential. We find that the bulk viscosity remains identically zero as it is for the classical case.Comment: 10 pages, 2 figures, submitted to Phys. Rev.

    A Dog in the Cancer Fight: Comparative Oncology in Osteosarcoma

    Get PDF
    Since the great Rudolf Virchow advised, “Between animal and human medicine there is no dividing line, nor should there be,” limited attention has been paid to cancer in animals. This is finally changing thanks to a renewed focus on studying pet dogs with cancer. Unlike the laboratory mice who have been the mainstay of animal models of disease, pet dogs share an environment with their human owners, have an intact immune system, and often develop diseases spontaneously in ways that mimic their human counterparts. Osteosarcoma (OSA) – while uncommon in humans - is a common malignancy in dogs. This comparatively high incidence alone renders pet dogs an ideal “model” to conduct translational and clinical research into OSA. Indeed, there are many similarities between the two species with respect to this disease. However, owing to the shorter life span and accelerated disease progression, treatment effects can be assessed much more rapidly in canines than in humans. Overall, dogs represent a unique model to study OSA; this chapter aims to discuss the ways that comparative oncology between dogs and humans are being used from basic science research, to genetics and mechanisms of disease, to tumor biology and finally to developing novel treatments

    First and Second Sound Modes of a Bose-Einstein Condensate in a Harmonic Trap

    Full text link
    We have calculated the first and second sound modes of a dilute interacting Bose gas in a spherical trap for temperatures (0.6<T/Tc<1.20.6<T/T_{c}<1.2) and for systems with 10410^4 to 10810^8 particles. The second sound modes (which exist only below TcT_{c}) generally have a stronger temperature dependence than the first sound modes. The puzzling temperature variations of the sound modes near TcT_{c} recently observed at JILA in systems with 10310^3 particles match surprisingly well with those of the first and second sound modes of much larger systems.Comment: a shorten version, more discussions are given on the nature of the second sound. A long footnote on the recent work of Zaremba, Griffin, and Nikuni (cond-mat/9705134) is added, the spectrum of the (\ell=1, n_2=0) mode is included in fig.

    Topological phases and circulating states of Bose-Einstein condensates

    Get PDF
    We show that the quantum topological effect predicted by Aharonov and Casher (AC effect) [Phys. Rev. Lett. 53, 319 (1984)] may be used to create circulating states of magnetically trapped atomic Bose-Einstein condensates (BEC). A simple experimental setup is suggested based on a multiply connected geometry such as a toroidal trap or a magnetic trap pinched by a blue-detuned laser. We give numerical estimates of such effects within the current atomic BEC experiments, and point out some interesting properties of the associated quantized circulating states.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev.

    Nanoscale Heat Transfer from Magnetic Nanoparticles and Ferritin in an Alternating Magnetic Field

    Get PDF
    Recent suggestions of nanoscale heat confinement on the surface of synthetic and biogenic magnetic nanoparticles during heating by radio frequency-alternating magnetic fields have generated intense interest because of the potential utility of this phenomenon for noninvasive control of biomolecular and cellular function. However, such confinement would represent a significant departure from the classical heat transfer theory. Here, we report an experimental investigation of nanoscale heat confinement on the surface of several types of iron oxide nanoparticles commonly used in biological research, using an all-optical method devoid of the potential artifacts present in previous studies. By simultaneously measuring the fluorescence of distinct thermochromic dyes attached to the particle surface or dissolved in the surrounding fluid during radio frequency magnetic stimulation, we found no measurable difference between the nanoparticle surface temperature and that of the surrounding fluid for three distinct nanoparticle types. Furthermore, the metalloprotein ferritin produced no temperature increase on the protein surface nor in the surrounding fluid. Experiments mimicking the designs of previous studies revealed potential sources of the artifacts. These findings inform the use of magnetic nanoparticle hyperthermia in engineered cellular and molecular systems
    corecore