3,066 research outputs found
Oscillations of Thick Accretion Discs Around Black Holes
We present a numerical study of the response of a thick accretion disc to a
localized, external perturbation with the aim of exciting internal modes of
oscillation. We find that the perturbations efficiently excite global modes
recently identified as acoustic p--modes, and closely related to the epicyclic
oscillations of test particles. The two strongest modes occur at
eigenfrequencies which are in a 3:2 ratio. We have assumed a constant specific
angular momentum distribution within the disc. Our models are in principle
scale--free and can be used to simulate accretion tori around stellar or super
massive black holes.Comment: 4 pages, 4 figures, accepted for publication as a letter in the
Monthly Notices of the Royal Astronomical Societ
Oscillations of Thick Accretion Discs Around Black Holes - II
We present a numerical study of the global modes of oscillation of thick
accretion discs around black holes. We have previously studied the case of
constant distributions of specific angular momentum. In this second paper, we
investigate (i) how the size of the disc affects the oscillation
eigenfrequencies, and (ii) the effect of power-law distributions of angular
momentum on the oscillations. In particular, we compare the oscillations of the
disc with the epicyclic eigenfrequencies of a test particle with different
angular momentum distributions orbiting around the central object. We find that
there is a frequency shift away from the epicyclic eigenfrequency of the test
particle to lower values as the size of the tori is increased. We have also
studied the response of a thick accretion disc to a localized external
perturbation using non constant specific angular momentum distributions within
the disc. We find that in this case it is also possible (as reported previously
for constant angular momentum distributions) to efficiently excite internal
modes of oscillation. In fact we show here that the local perturbations excite
global oscillations (acoustic p modes) closely related to the epicyclic
oscillations of test particles. Our results are particularly relevant in the
context of low mass X-ray binaries and microquasars, and the high frequency
Quasi-Periodic Oscillations (QPOs) observed in them. Our computations make use
of a Smooth Particle Hydrodynamics (SPH) code in azimuthal symmetry, and use a
gravitational potential that mimics the effects of strong gravity.Comment: 10 pages, 8 figures, accepted for publication as a paper in the
Monthly Notices of the Royal Astronomical Societ
Past and future gauge in numerical relativity
Numerical relativity describes a discrete initial value problem for general
relativity. A choice of gauge involves slicing space-time into space-like
hypersurfaces. This introduces past and future gauge relative to the
hypersurface of present time. Here, we propose solving the discretized Einstein
equations with a choice of gauge in the future and a dynamical gauge in the
past. The method is illustrated on a polarized Gowdy wave.Comment: To appear in Class Quantum Grav, Let
Scattering Lens Resolves sub-100 nm Structures with Visible Light
The smallest structures that conventional lenses are able to optically
resolve are of the order of 200 nm. We introduce a new type of lens that
exploits multiple scattering of light to generate a scanning nano-sized optical
focus. With an experimental realization of this lens in gallium phosphide we
have succeeded to image gold nanoparticles at 97 nm optical resolution. Our
work is the first lens that provides a resolution in the nanometer regime at
visible wavelengths.Comment: 4 pages, 3 figure
Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO
Gamma-ray bursts are believed to originate in core-collapse of massive stars.
This produces an active nucleus containing a rapidly rotating Kerr black hole
surrounded by a uniformly magnetized torus represented by two counter-oriented
current rings. We quantify black hole spin-interactions with the torus and
charged particles along open magnetic flux-tubes subtended by the event
horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of
frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with
GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii)
aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich
et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al.
2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating
LIGO/Virgo detectors enables searches for nearby events and their spectral
closure density 6e-9 around 250Hz in the stochastic background radiation in
gravitational waves. At current sensitivity, LIGO-Hanford may place an upper
bound around 150MSolar in GRB030329. Detection of Egw thus provides a method
for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49
Entropic force in black hole binaries and its Newtonian limits
We give an exact solution for the static force between two black holes at the
turning points in their binary motion. The results are derived by Gibbs'
principle and the Bekenstein-Hawking entropy applied to the apparent horizon
surfaces in time-symmetric initial data. New power laws are derived for the
entropy jump in mergers, while Newton's law is shown to derive from a new
adiabatic variational principle for the Hilbert action in the presence of
apparent horizon surfaces. In this approach, entropy is strictly monotonic such
that gravity is attractive for all separations including mergers, and the
Bekenstein entropy bound is satisfied also at arbitrarily large separations,
where gravity reduces to Newton's law. The latter is generalized to point
particles in the Newtonian limit by application of Gibbs' principle to
world-lines crossing light cones.Comment: Accepted for publication in Phys. Rev.
On the detectability of gravitational waves background produced by gamma ray bursts
In this paper we discuss a new strategy for the detection of gravitational
radiation likely emitted by cosmological gamma ray burst. Robust and
conservative estimates lead to the conclusion that the uncorrelated
superimposition of bursts of gravitational waves can be detected by
interferometric detectors like VIRGO or LIGO. The expected signal is predicted
to carry two very distinctive signatures: the cosmological dipole anisotropy
and a characteristic time scale in the auto correlation spectrum, which might
be exploited, perhaps with ad hoc modifications and/or upgrading of the planned
experiments, to confirm the non-instrumental origin of the signal.Comment: 9 pages, 2 figures, LATEX2e, Accepted for pubblications as a Letter
to the Editor in Journal of Physics G: Nuclear and Particle Physic
Optimal Concentration of Light in Turbid Materials
In turbid materials it is impossible to concentrate light into a focus with
conventional optics. Recently it has been shown that the intensity on a dyed
probe inside a turbid material can be enhanced by spatially shaping the wave
front of light before it enters a turbid medium. Here we show that this
enhancement is due to concentration of light energy to a spot much smaller than
a wavelength. We focus light on a dyed probe sphere that is hidden under an
opaque layer. The light is optimally concentrated to a focus which does not
exceed the smallest focal area physically possible by more than 68%. A
comparison between the intensity enhancements of both the emission and
excitation light supports the conclusion of optimal light concentration.Comment: We corrected an ambiguous description of the focus size in our
abstract and text pointed out by an anonymous refere
Electron-Positron Jets from a Critically Magnetized Black Hole
The curved spacetime surrounding a rotating black hole dramatically alters
the structure of nearby electromagnetic fields. The Wald field which is an
asymptotically uniform magnetic field aligned with the angular momentum of the
hole provides a convenient starting point to analyze the effects of radiative
corrections on electrodynamics in curved spacetime. Since the curvature of the
spacetime is small on the scale of the electron's Compton wavelength, the tools
of quantum field theory in flat spacetime are reliable and show that a rotating
black hole immersed in a magnetic field approaching the quantum critical value
of ~G cm is unstable. Specifically, a maximally rotating
three-solar-mass black hole immersed in a magnetic field of ~G would be a copious producer of electron-positron pairs with a
luminosity of erg s.Comment: 10 pages, 6 figures, submitted to Phys. Rev.
Nonlinear DC-response in Composites: a Percolative Study
The DC-response, namely the - and - charateristics, of a variety
of composite materials are in general found to be nonlinear. We attempt to
understand the generic nature of the response charactersistics and study the
peculiarities associated with them. Our approach is based on a simple and
minimal model bond percolative network. We do simulate the resistor network
with appropritate linear and nonlinear bonds and obtain macroscopic nonlinear
response characteristics. We discuss the associated physics. An effective
medium approximation (EMA) of the corresponding resistor network is also given.Comment: Text written in RevTEX, 15 pages (20 postscript figures included),
submitted to Phys. Rev. E. Some minor corrections made in the text, corrected
one reference, the format changed (from 32 pages preprint to 15 pages
- …
