6 research outputs found
Ekstraksi Minyak Atsiri dari Daun Nilam (Pogostemon cablin Benth) dan Gaharu (Aquilaria malaccensis) dengan Metode Microwave Air-Hydrodistillation dan Solvent-Free Microwave Extraction
Minyak nilam (Patchouli oil) dan minyak gaharu (Agarwood oil) biasanya dihasilkan dari penyulingan secara konvensional yang prosesnya memerlukan energi yang besar, pelarut dalam jumlah yang banyak, dan waktu yang cukup lama. Oleh karena itu, perlu dipertimbangkan untuk menggunakan “green technique” baru dalam ekstraksi minyak atsiri dengan penggunaan energi, pelarut, dan waktu yang minimum. Sehingga pada penelitian ini akan digunakan pengembangan dari metode microwave hydrodistillation yaitu metode microwave air-hydrodistillation dan metode solvent-free microwave extraction untuk mengoptimalkan proses ekstraksi minyak atsiri.
Tujuan dalam penelitian ini adalah mempelajari faktor-faktor yang berpengaruh terhadap metode microwave air-hydrodistillation dan solvent-free microwave extraction pada ekstraksi minyak nilam dan minyak gaharu, yang meliputi daya microwave, rasio antara bahan baku yang akan diekstrak dengan pelarut atau distiller yang digunakan, waktu perendaman, kondisi dan ukuran dari bahan baku yang akan diekstrak, serta pengaruh dari ada tidaknya penambahan aliran udara pada metode microwave air-hydrodistillation terhadap yield dan recovery minyak yang dihasilkan. Selain itu dalam penelitian ini juga ditentukan model kinetika dan optimasi menggunakan metode Response Surface Methodology (RSM) untuk ekstraksi minyak nilam dengan menggunakan metode microwave air-hydrodistillation dan solvent-free microwave extraction.
Bahan yang digunakan pada penelitian ini adalah daun nilam (Pogostemon cablin Benth) dalam kondisi segar dan kering serta gaharu (Aquilaria malaccensis) dalam kondisi kering. Pada ekstraksi dengan metode microwave-air hydrodistillation dan solvent-free microwave extraction dilakukan pada daya 150, 300, 450, dan 600 W , rasio bahan baku terhadap solvent: untuk daun nilam (Pogostemon cablin Benth) adalah 0,20, 0,30, 0,40, dan 0,50 g mL-1, sedangkan untuk gaharu (Aquilaria malaccensis) adalah 0,75 g mL-1 rasio bahan baku terhadap distiller: untuk daun nilam (Pogostemon cablin Benth) adalah 0,06, 0,08, 0,10, dan 0,12 g mL-1, sedangkan untuk gaharu (Aquilaria malaccensis) adalah 0,15 g mL-1, ukuran bahan baku: untuk daun nilam adalah utuh , setengah utuh (dipotong hingga ukurannya ± 50% dari ukuran bahan baku utuh), dan cacah (dipotong hingga ukurannya ≤ 10% dari ukuran bahan baku utuh) sedangkan untuk gaharu dalam bentuk cacah (±2 cm). Pada ekstraksi minyak nilam, waktu ekstraksi yang digunakan untuk metode microwave air-hydrodistillation: 1, 2, dan 3 jam dengan waktu pengamatan setiap 20 menit serta untuk metode solvent-free microwave extraction: 30, 60, dan 90 menit dengan waktu pengamatan setiap 10 menit. Sedangkan pada ekstraksi minyak gaharu, waktu ekstraksi yang digunakan untuk metode microwave air-hydrodistillation selama 4 jam dengan waktu pengamatan setiap 2 jam serta untuk metode solvent-free microwave extraction selama 3 jam dengan waktu pengamatan setiap 1,5 jam. Untuk ekstraksi dengan metode microwave air-hydrodistillation laju aliran udara yang digunakan adalah 0, 0,5,dan 1,0 L/min, serta untuk ekstraksi minyak gaharu dengan metode solvent-free microwave extraction, dilakukan perendaman bahan selama 0,5, 6, dan 24 jam.
Dari hasil penelitian dapat dilihat bahwa secara umum ekstraksi minyak nilam menggunakan metode solvent-free microwave extraction menghasilkan yield yang lebih besar dengan waktu yang lebih singkat jika dibandingkan dengan metode microwave air-hydrodistillation. Kondisi operasi optimal untuk ekstraksi daun nilam segar dan kering dengan menggunakan metode microwave air-hydrodistillation diperoleh ketika menggunakan daya microwave 450 W, ukuran bahan cacah, rasio massa bahan baku terhadap volume solvent 0,3 g/mL dan laju aliran udara 0,5 L/min. Kondisi operasi optimal untuk ekstraksi daun nilam segar dengan menggunakan metode solvent-free microwave extraction diperoleh ketika menggunakan daya microwave 300 W, ukuran bahan cacah, dan rasio massa bahan baku terhadap volume distiller 0,06 g/mL. Sedangkan kondisi operasi optimal untuk ekstraksi daun nilam kering dengan menggunakan metode solvent-free microwave
extraction diperoleh ketika menggunakan daya microwave 450 W, ukuran bahan utuh, dan rasio massa bahan baku terhadap volume distiller 0,06 g/mL. Dan untuk ekstraksi minyak gaharu dengan metode microwave air-hydrodistillation lebih efektif dibandingkan metode solvent-free microwave extraction, dengan kondisi operasi yaitu daya microwave 600 W, waktu perendaman 6 jam, waktu ekstraksi 4 jam, rasio antara massa bahan baku baku terhadap volume solvent 0,15 g/mL, dan laju aliran udara 1,0 L/min. Penambahan aliran udara pada metode microwave air-hydrodistillation mampu meningkatkan yield dan akumulasi recovery minyak nilam dan minyak gaharu yang diperoleh, namun laju alirnya juga harus disesuaikan dengan karakteristik bahan. Berdasarkan pemodelan kinetika yang telah dilakukan, maka dapat dikatakan bahwa model kinetika orde dua lebih dapat merepresentasikan secara baik hasil eksperimen dari ekstraksi minyak nilam dari daun nilam segar dan kering dengan metode microwave air-hydrodistillation dan solvent-free microwave extraction apabila dibandingkan dengan model kinetika orde satu. Selain itu untuk hasil optimasi proses ekstraksi minyak nilam dari daun nilam segar dan kering dengan metode microwave air-hydrodistillation dan solvent-free microwave extraction menggunakan Response Surface Methodology (RSM) diperoleh kondisi operasi optimal yaitu: untuk ekstraksi minyak nilam dengan metode microwave air-hydrodistillation dari daun nilam segar (daya microwave 486,792 W, rasio F/S 0,2966 g/mL, waktu ekstraksi 173,051 menit, dan laju aliran udara 0,0913 L/min) dan dari daun nilam kering (daya microwave 587,107 W, rasio F/S 0,2433 g/mL, waktu ekstraksi 161,92 menit, dan laju aliran udara 0,8757 L/min), sedangkan dengan metode solvent-free microwave extraction dari daun nilam segar (daya microwave 380,433 W, rasio F/D 0,0526 g/mL, dan waktu ekstraksi 90 menit) dan dari daun nilam kering (daya microwave 486,433 W, rasio F/D 0,0528 g/mL, dan waktu ekstraksi 89,9999 menit). Berdasarkan hasil pengujian terhadap sifat fisik dari minyak nilam menunjukkan bahwa minyak nilam yang diperoleh dengan metode microwave air-hydrodistillation dan solvent-free microwave extraction memiliki kualitas (berat jenis dan kelarutan dalam alkohol) yang sama. Sedangkan pengujian terhadap sifat kimia pada minyak nilam menunjukkan bahwa kadar patchouli alcohol dari minyak nilam yang diperoleh dengan metode solvent-free microwave extraction lebih besar jika dibandingkan dengan yang diperoleh menggunakan metode microwave air-hydrodistillation, dan pada minyak gaharu yang diperoleh dengan metode microwave air-hydrodistillation memiliki komponen tertinggi yaitu Îł-Gurjunene sedangkan dengan metode solvent-free microwave extraction yaitu Aromadendrene . Berdasarkan hasil pengujian terhadap sifat fisik dan kimia, minyak nilam hasil ekstraksi menggunakan metode microwave air-hydrodistillation dan solvent-free microwave extraction telah sesuai dengan standar kualitas SNI 06-2385-2006 dan ISO 3757 : 2002 (E), sedangkan untuk minyak gaharu telah sesuai dengan penelitian terdahulu.
=========================================================================================================
Patchouli oil and Agarwood oil are usually produced from conventional distillation process which requires great energy, solvents in significant amounts, and quite a long time. Therefore, should be considered to use "green technique" in the extraction of essential oils with the minimum energy, solvent, and time. This research will use the development of microwave hydrodistillation method are microwave air-hydrodistillation and solvent-free microwave extraction method to optimize the extraction of essential oils.
The purpose of this research is to study the factors that influence the microwave air-hydrodistillation and solvent-free microwave extraction methods, which include microwave power, the ratio of raw material to be extracted with a solvent or the distiller used, soaking time, condition and size of the raw materials to be extracted, and the influence of the presence or absence of additional airflow in microwave-air-hydrodistillation method to the yield and recovery of oil produced. In addition, this research also determined kinetics and optimization model using Response Surface Methodology (RSM) method for patchouli oil extraction using microwave air-hydrodistillation and solvent-free microwave extraction method.
The material used in this research were patchouli leaves (Pogostemon cablin Benth) in fresh and dry conditions and agarwood (Aquilaria malaccensis) in dry conditions. In extraction using microwave air-hydrodistillation and solvent-free microwave extraction methods performed at 150, 300, 450, and 600 W, the ratio of raw material to solvent: for patchouli (Pogostemon cablin Benth) was 0.20, 0.30, 0.40, and 0.50 g mL-1, while for agarwood (Aquilaria malaccensis) was 0.75 g mL-1, the ratio of raw material to the distiller: for patchouli (Pogostemon cablin Benth) was 0.06, 0.08 , 0.10, and 0.12 g mL-1, while for agarwood (Aquilaria malaccensis) was 0.15 g mL-1, the size of the raw material: for patchouli leaves is intact, half intact (cut to ± 50% size of raw material intact), and chopped (cut to size ≤ 10% of the size of the raw material intact) while for agarwood in the chopped size (± 2 cm). At the extraction of patchouli oil, the extraction time used for microwave air-hydrodistillation method: 1, 2, and 3 hours with observation time every 20 minutes and for solvent-free microwave extraction method: 30, 60, and 90 minutes with observation time every 10 minute. While on agarwood oil extraction, extraction time used for microwave air-hydrodistillation method for 4 hours with observation time every 2 hours and for solvent-free microwave extraction method for 3 hours with observation time every 1.5 hours. For extraction using microwave-air-hydrodistillation method the airflow rate used was 0, 0.5, and 1.0 L/min, and for the extraction of agarwood oil using solvent-free microwave extraction method the soaking material has been done for 0.5, 6 , and 24 hours.
The intermediate results obtained in this study are the optimal operating conditions for the extraction of fresh patchouli leaves using solvent-free microwave extraction method obtained when using microwave power of 300 W, with chopped leaves, and the ratio of raw material with volume of distiller is 0,06 g/mL. The optimal operating conditions for the extraction of dried patchouli leaves using solvent-free microwave extraction method obtained when using microwave power of 450 W, with intact leaves, and the ratio of raw material with volume of distiller is 0,06 g/mL. And for the extraction of agarwood oil using solvent-free microwave extraction method, the optimal operating conditions were obtained when using agarwood materials with powder sizes, microwave power of 300 W, and the ratio of raw material with volume of distiller is 0.01 g / mL. Based on the test result on the physical properties of patchouli oil showed that patchouli oil obtained using solvent-free microwave extraction method has quality (density and solubility in alcohol) that has been in accordance with quality standards SNI 06-2385-2006 and ISO 3757: 2002 ( E).
From the research results it can be seen that in general the extraction of patchouli oil using solvent-free microwave extraction method produces a larger yield with a shorter time when compared with the microwave air-hydrodistillation method. The optimum operating conditions for the extraction of fresh and dried patchouli leaves using microwave air-hydrodistillation method were obtained when using microwave power of 450 W, with chopped leaves, the ratio of raw material with volume of solvent is 0,3 g/mL and the airflow rate of 0.5 L/min. The optimum operating conditions for the extraction of fresh patchouli leaves using solvent-free microwave extraction method obtained when using microwave power of 300 W, with chopped leaves, and the ratio of raw material with volume of distiller is 0,06 g/mL. The optimum operating conditions for the extraction of dried patchouli leaves using solvent-free microwave extraction method obtained when using microwave power of 450 W, with intact leaves, and the ratio of raw material with volume of distiller is 0,06 g/mL. And for extraction of agarwood oil using microwave air-hydrodistillation method is more effective than solvent-free microwave extraction method with operating conditions were microwave power of 600 W, soaking time for 6 hours, extraction time for 4 hours, the ratio of raw material with volume of solvent is 0,15 g/mL, and airflow rate of 1.0 L/min. The addition of airflow to the microwave air-hydrodistillation method can increase the yield and accumulated recovery of patchouli oil and agarwood oil obtained, but the flow rate must also be adjusted to the material characteristics. Based on kinetic modeling that has been done, it can be said that second-order kinetics model can better represent experiment result from patchouli oil extraction from fresh and dried patchouli using microwave air-hydrodistillation and solvent-free microwave extraction methods when compared with first-order kinetics model. In addition to optimizing the process of extraction patchouli oil from fresh and dried patchouli leaves using microwave air-hydrodistillation and solvent-free microwave extraction method using Response Surface Methodology (RSM) obtained optimal operating conditions are: for the extraction of patchouli oil using microwave air-hydrodistillation method from fresh patchouli leaves (microwave power of 486,792 W, F/S ratio of 0.2966 g/mL, extraction time for 173,051 min, and air flow rate of 0.0913 L/min) and from dried patchouli leaves (microwave power of 587,107 W, F/S ratio 0.2433 g/mL, extraction time for 161.92 min, and airflow rate of 0.8757 L/min), while with solvent-free microwave extraction method from fresh patchouli leaves (microwave power of 380,433 W, F/D ratio of 0.0526 g/mL, and extraction time for 90 min) and from dried patchouli leaves (microwave power of 486,433 W, F/D ratio of 0.0528 g/mL, and extraction time for 89.9999 min). Based on the test for physical properties of patchouli oil showed that the essential oil obtained using microwave air-hydrodistillation and solvent-free microwave extraction methods have the same quality (density and solubility in alcohol). While the test for the chemical properties of patchouli oil showed that the patchouli alcohol content obtained by solvent-free microwave extraction method has higher when compared with those obtained using microwave air-hydrodistillation method, and in agarwood oil obtained by using microwave air-hydrodistillation has the highest component that is Îł-Gurjunene while with solvent-free microwave extraction method that is Aromadendrene. Based on test result on physical and chemical properties, patchouli oil extracted using microwave air-hydrodistillation and solvent-free microwave extraction methods have been in accordance with quality standards SNI 06-2385-2006 and ISO 3757: 2002 (E), while for agarwoodoil accordance with the previous studies
Extraction of Basil Leaves Essential Oil using Microwave Assisted Hydrodistillation Method: Physical Characterization and Antibacterial Activity
Basil oil can be obtained from basil leaves by non-extraction methods, namely Microwave Assisted Hydrodistillation (MAHD). Therefore, this research aims to determine the yield percentage, essential oil composition by GC-MS, physical characteristics, and antibacterial activity of basil essential oil. The highest yield of 0.3076% was obtained at the optimum condition, which included a microwave power of 300 W, a mass-to-volume solvent ratio (F/S) of 0.75 g/mL, a raw material size of ± 1.75 cm, and an extraction time of 90 min. The results of the analysis of variance showed that all process parameters used had a significant effect on the yield obtained. Basil oil exhibited a larger inhibition zone against Escherichia coli bacteria (16.38 mm) which tended to be stronger than Staphylococcus aureus (5.95 mm) and was classified as moderate. The main components contained in the basil oil were E-Citral (46.79%) and Z-Citral (38.17%). The physical characteristic test showed that the basil oil was soluble in 96% ethanol after a ratio of 1:9, with 1 ml of basil oil compared to 9 ml of ethanol. The density of basil oil at 0.961 g/mL also complied with the standard value according to the Essential Oil Association (EOA) of Ocimum basilicum Essential Oil. These results showed revealed that the parameter analyzed using oil yields at operating conditions produced the most optimum yield value
Effect of Immersion Concentration in Salt Solution, Drying Time and Air Velocity on Drying Wet Noodles Using a Tray Dryer and Solar Assistance
The noodles in the market are dry noodles with 8-10% water content. Dried noodles have a longer shelf life because they are less prone to mold growth. Drying noodles with the help of the sun and tray dryers are currently an option because they are efficient and do not require a lot of energy. Reduction of water content is also optimized by soaking wet noodles in salt water. This study aims to determine the effect of soaking noodles in salt water and the flow rate to decrease the water content of noodles. The study began with soaking wet noodles in a salt solution with a variation of 50-150 g/L, then dried for 1 hour using a hybrid method and tray dryer with a flow rate variation of 1.2-3.3 m/s. Observations were made at intervals of 0-1 hour. The results showed that the time and speed of the flow rate can reduce the humidity in the drying chamber of the tray dryer. The lowest water content reduction of up to 11% was obtained when soaking wet noodles in 150 g/L salt solution and at the highest flow rate of 3.3 m/s. The ANOVA results show that the drying method with tray dryer is more optimal than hybrid drying. Thus, this method can be a solution to optimize the noodle drying process quickly and efficiently
Optimization of Essential Oil Extraction of Beluntas (Pluchea Indica L.) Leaves by Using Solvent-Free Microwave Extraction
Beluntas (Pluchea Indica L.) which commonly used as astringent and antipyretic has a high potential for the feedstock of essential oil production. The objective of this work is to optimize solvent-free microwave extraction (SFME) of Beluntas leaves by using response surface methodology (RSM). Box-Behnken Design with the variations of extraction time (60-120 min), feed/distiller ratio (0.06-0.1 g/ml), and heating power (150-450 W) was utilized to optimize essential oil yield. The feed/distiller ratio factor had the highest significant effect on the essential oil yield (P<0.05). Essential oil yield increased as the increase of oil heating power and time extraction, and vice versa. On the other hand, the increase in the feed/distiller ratio gave a negative impact on the essential oil yield. The maximum essential oil yield using SFME method of 0.2728 b/b% was obtained for the optimized condition of extraction time of 90 min, microwave heating power of 450 W, and feed/distiller ratio of 0.06
Optimization of Microwave-Assisted Alkali Pretreatment for Enhancement of Delignification Process of Cocoa Pod Husk
In this study, the optimization of microwave-assisted alkaline (MAA) pretreatment is performed to attain the optimal operating parameters for the delignification of cocoa pod husk (CPH). The MAA performance was examined by heating the CPH solid with different particle sizes (60–120 mesh) and NaOH solution with a different sample to a solvent (SS) ratio (0.02–0.05 g/L), for short irradiation time (1–4 min). Box-Behnken Design (BBD) was utilized to optimize the percentage of lignocellulose composition changes. The results show that by enlarging particle size, the content of lignin and cellulose decreased while hemicellulose increased. By prolong irradiation time, the content of lignin and hemicellulose decreased while cellulose elevated. On the other hand, increasing the SS ratio was not significant for hemicellulose content changes. From FTIR and SEM characterization, the MAA drove the removal of lignin and hemicellulose of CPH and increased cellulose slightly. Supported by kinetic study which conducted in this work, it was exhibited that MAA pretreatment technology is an effective delignification method of CPH which can tackle the bottleneck of its commercial biofuel production. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).