1,266 research outputs found

    Abelian covers of surfaces and the homology of the level L mapping class group

    Full text link
    We calculate the first homology group of the mapping class group with coefficients in the first rational homology group of the universal abelian Z/LZ\Z / L \Z-cover of the surface. If the surface has one marked point, then the answer is \Q^{\tau(L)}, where τ(L)\tau(L) is the number of positive divisors of LL. If the surface instead has one boundary component, then the answer is \Q. We also perform the same calculation for the level LL subgroup of the mapping class group. Set HL=H1(Σg;Z/LZ)H_L = H_1(\Sigma_g;\Z/L\Z). If the surface has one marked point, then the answer is \Q[H_L], the rational group ring of HLH_L. If the surface instead has one boundary component, then the answer is \Q.Comment: 32 pages, 10 figures; numerous corrections and simplifications; to appear in J. Topol. Ana

    The Smith Cloud: HI associated with the Sgr dwarf?

    Get PDF
    The Smith high velocity cloud (V(LSR) = 98 kms) has been observed at two locations in the emission lines [OIII]5007, [NII]6548 and H-alpha. Both the [NII] and H-alpha profiles show bright cores due to the Reynolds layer, and red wings with emission extending to V(LSR) = 130 kms. This is the first simultaneous detection of two emission lines towards a high velocity cloud, allowing us to form the ratio of these line profiles as a function of LSR velocity. At both cloud positions, we see a clear distinction between emission at the cloud velocity, and the Reynolds layer emission (V(LSR) = 0). The [NII]/H-alpha ratio (=0.25) for the Reynolds layer is typical of the warm ionised medium. At the cloud velocity, this ratio is enhanced by a factor of 3-4 compared to emission at rest with respect to the LSR. A moderately deep upper limit at [OIII] (0.12R at 3-sigma) was derived from our data. If the emission arises from dilute photoionisation from hot young stars, the highly enhanced [NII]/H-alpha ratio, the [OIII] non-detection and weak H-alpha emission (0.24-0.30R) suggest that the Smith Cloud is 26+/-4 kpc from the Sun, at a Galactocentric radius of 20+/-4 kpc. This value assumes that the emission arises from an optically thick slab, with a covering fraction of unity as seen by the ionizing photons, whose orientation is either (a) parallel to the Galactic disk, or (b) such as to maximize the received flux from the disk. The estimated mass and size of the cloud are 4x10^6 Msun and 6 kpc. We discuss a possible association with the much larger Sgr dwarf, at a galactocentric radius of 16+/-2 kpc, which lies within 35 degrees (~12 kpc) of the Smith Cloud.Comment: 18 pages, 14 figures, mn.sty. Our first application of a new method for establishing distances to high velocity clouds. This version matches paper to appear in MNRAS, 299, 611-624 (Sept. 11 issue

    The four leading arms of the Magellanic Cloud system

    Full text link
    The Magellanic Cloud System (MCS) interacts via tidal and drag forces with the Milky Way galaxy. Using the Parkes Galactic All-Sky Survey (GASS) of atomic hydrogen we explore the role of drag on the evolution of the so-called Leading Arm (LA). We present a new image recognition algorithm that allows us to differentiate features within a 3-D data cube (longitude, latitude, radial velocity) and to parameterize individual coherent structures. We compiled an HI object catalog of LA objects within an area of 70 degr x 85 degr (1.6 sr) of the LA region. This catalog comprises information of location, column density, line width, shape and asymmetries of the individual LA objects above the 4-sigma threshold of Delta T_b simeq 200 mK. We present evidence of a fourth arm segment (LA4). For all LA objects we find an inverse correlation of velocities v_GSR in Galactic Standard of Rest frame with Magellanic longitude. High-mass objects tend to have higher radial velocities than low-mass ones. About 1/4 of all LA objects can be characterized as head-tail (HT) structures. Using image recognition with objective criteria, it is feasible to isolate most of LA emission from the diffuse Milky Way HI gas. Some blended gas components (we estimate 5%) escape detection, but we find a total gas content of the LA that is about 50% higher than previously assumed. These methods allow the deceleration of the LA clouds to be traced towards the Milky Way disk by drag forces. The derived velocity gradient strongly supports the assumption that the whole LA originates entirely in the Large Magellanic Cloud (LMC). LA4 is observed opposite to LA1, and we propose that both arms are related, spanning about 52kpc in space. HT structures trace drag forces even at tens of kpc altitudes above the Milky Way disk.Comment: 12 pages, 7 figures, 2 tables, accepted for publication Astronomy & Astrophysics 201

    Mapping Hydrogen in the Galaxy, Galactic Halo, and Local Group with ALFA: The GALFA-HI Survey Starting with TOGS

    Full text link
    Radio observations of gas in the Milky Way and Local Group are vital for understanding how galaxies function as systems. The unique sensitivity of Arecibo's 305m dish, coupled with the 7-beam Arecibo L-Band Feed Array (ALFA), provides an unparalleled tool for investigating the full range of interstellar phenomena traced by the HI 21cm line. The GALFA (Galactic ALFA) HI Survey is mapping the entire Arecibo sky over a velocity range of -700 to +700 km/s with 0.2 km/s velocity channels and an angular resolution of 3.4 arcminutes. We present highlights from the TOGS (Turn on GALFA Survey) portion of GALFA-HI, which is covering thousands of square degrees in commensal drift scan observations with the ALFALFA and AGES extragalactic ALFA surveys. This work is supported in part by the National Astronomy and Ionosphere Center, operated by Cornell University under cooperative agreement with the National Science Foundation.Comment: 3 pages, including 2 figure pages; figure image quality significantly reduced; for full resolution version, please see http://www.naic.edu/~gibson/cv/ao08_writeup.pdf ; to be published in AIP conference proceedings for ``The Evolution of Galaxies through the Neutral Hydrogen Window'', eds. R. Minchin & E. Momjia

    A Precision Angle Sensor using an Optical Lever inside a Sagnac Interferometer

    Full text link
    We built an ultra low noise angle sensor by combining a folded optical lever and a Sagnac interferometer. The instrument has a measured noise floor of 1.3 prad / Hz^(1/2) at 2.4 kHz. We achieve this record angle sensitivity using a proof-of-concept apparatus with a conservative N=11 bounces in the optical lever. This technique could be extended to reach sub-picoradian / Hz^(1/2) sensitivities with an optimized design.Comment: 3 pages, 4 figure

    Physical Properties of Complex C Halo Clouds

    Get PDF
    Observations from the Galactic Arecibo L-Band Feed Array HI (GALFA-HI) Survey of the tail of Complex C are presented and the halo clouds associated with this complex cataloged. The properties of the Complex C clouds are compared to clouds cataloged at the tail of the Magellanic Stream to provide insight into the origin and destruction mechanism of Complex C. Magellanic Stream and Complex C clouds show similarities in their mass distributions (slope = -0.7 and -0.6, respectively) and have a common linewidth of 20 - 30 km/s (indicative of a warm component), which may indicate a common origin and/or physical process breaking down the clouds. The clouds cataloged at the tail of Complex C extend over a mass range of 10^1.1 to 10^4.8 solar masses, sizes of 10^1.2 to 10^2.6 pc, and have a median volume density of 0.065 cm^(-3) and median pressure of (P/k) = 580 K cm^{-3}. We do not see a prominent two-phase structure in Complex C, possibly due to its low metallicity and inefficient cooling compared to other halo clouds. From assuming the Complex C clouds are in pressure equilibrium with a hot halo medium, we find a median halo density of 5.8 x 10^(-4) cm^(-3), which given a constant distance of 10 kpc, is at a z-height of ~3 kpc. Using the same argument for the Stream results in a median halo density of 8.4 x 10^(-5) x (60kpc/d) cm^(-3). These densities are consistent with previous observational constraints and cosmological simulations. We also assess the derived cloud and halo properties with three dimensional grid simulations of halo HI clouds and find the temperature is generally consistent within a factor of 1.5 and the volume densities, pressures and halo densities are consistent within a factor of 3.Comment: Accepted for publication in AJ. 54 pages, including 6 tables and 16 figure

    The Relationship Between Baryons and Dark Matter in Extended Galaxy Halos

    Full text link
    The relationship between gas-rich galaxies and Ly-alpha absorbers is addressed in this paper in the context of the baryonic content of galaxy halos. Deep Arecibo HI observations are presented of two gas-rich spiral galaxies within 125 kpc projected distance of a Ly-alpha absorber at a similar velocity. The galaxies investigated are close to edge-on and the absorbers lie almost along their major axes, allowing for a comparison of the Ly-alpha absorber velocities with galactic rotation. This comparison is used to examine whether the absorbers are diffuse gas rotating with the galaxies' halos, outflow material from the galaxies, or intergalactic gas in the low redshift cosmic web. The results indicate that if the gas resides in the galaxies' halos it is not rotating with the system and possibly counter-rotating. In addition, simple geometry indicates the gas was not ejected from the galaxies and there are no gas-rich satellites detected down to 3.6 - 7.5 x 10^6 Msun, or remnants of satellites to 5-6 x 10^{18} cm^{-2}. The gas could potentially be infalling from large radii, but the velocities and distances are rather high compared to the high velocity clouds around the Milky Way. The most likely explanation is the galaxies and absorbers are not directly associated, despite the vicinity of the spiral galaxies to the absorbers (58-77 kpc from the HI edge). The spiral galaxies reside in a filament of intergalactic gas, and the gas detected by the absorber has not yet come into equilibrium with the galaxy. These results also indicate that the massive, extended dark matter halos of spiral galaxies do not commonly have an associated diffuse baryonic component at large radii.Comment: Accepted by AJ, 33 pages preprint format, see http://www.astro.lsa.umich.edu/~mputman/putman1.pdf for a higher resolution versio
    corecore