151 research outputs found

    Single-Source Alkoxide Precursor Approach to Titanium Molybdate, TiMoO5, and Its Structure, Electrochemical Properties, and Potential as an Anode Material for Alkali Metal Ion Batteries

    Get PDF
    Transition-metal oxide nanostructured materials are potentially attractive alternatives as anodes for Li ion batteries and as photocatalysts. Combining the structural and thermal stability of titanium oxides with the relatively high oxidation potential and charge capacity of molybdenum(VI) oxides was the motivation for a search for approaches to mixed oxides of these two metals. Challenges in traditional synthetic methods for such materials made development of a soft chemistry single-source precursor pathway our priority. A series of bimetallic Ti-Mo alkoxides were produced by reactions of homometallic species in a 1:1 ratio. Thermal solution reduction with subsequent reoxidation by dry air offered in minor yields Ti2Mo2O4(OMe)(6)((OPr)-Pr-i)(6) (1) by the interaction of Ti((OPr)-Pr-i)(4) with MoO-(OMe)(4) and Ti6Mo6O22((OPr)-Pr-i)(16)(iPrOH)(2) (2) by the reaction of Ti((OPr)-Pr-i)(4) with MoO((OPr)-Pr-i)(4). An attempt to improve the yield of 2 by microhydrolysis, using the addition of stoichiometric amounts of water, resulted in the formation with high yield of a different complex, Mo7Ti7+xO31+x((OPr)-Pr-i)(8+2x) (3). Controlled thermal decomposition of 1-3 in air resulted in their transformation into the phase TiMoO5 (4) with an orthorhombic structure in space group Pnma, as determined by a Rietveld refinement. The electrochemical characteristics of 4 and its chemical transformation on Li insertion were investigated, showing its potential as a promising anode material for Li ion batteries for the first time. A lower charge capacity and lower stability were observed for its application as an anode for a Na ion battery

    From waste paper basket to solid state and Li-HEC ultracapacitor electrodes : a value added journey for shredded office paper

    No full text
    Hydrothermal processing followed by controlled pyrolysis of used white office paper (a globally collectable shredded paper waste) are performed to obtain high surface area carbon with hierarchical pore size distribution. The BET specific surface area of such carbon is 2341 m2 g−1. The interconnected macroporous structure along with the concurrent presence of mesopores and micropores makes the material ideal for ultracapacitor application. Such waste paper derived carbon (WPC) shows remarkable performance in all solid-state supercapacitor fabricated with ionic liquid-polymer gel electrolyte. At room temperature, the material exhibits a power density of 19 000 W kg−1 with an energy capability of 31 Wh kg−1. The Li-ion electrochemical capacitor constructed using WPC as cathode also shows an excellent energy storage capacity of 61 Wh kg−1

    Epigallocatechin gallate protects BEAS-2B cells from lipopolysaccharide-induced apoptosis through upregulation of gastrin-releasing peptide

    No full text
    Gastrin-releasing peptide (GRP) plays a major role in the development and maintenance of lung epithelial cells by promoting cell division, whereas its suppression causes growth arrest and apoptosis. The present study shows that human bronchial epithelial BEAS-2B cells challenged with lipopolysaccharide (LPS), an endotoxin from gram-negative bacteria, downregulated GRP expression and induced apoptosis via upregulation of p53 and active caspase-3, signifying the importance of GRP in lung epithelial cell survival. However, in the presence of epigallocatechin-3-gallate (EGCG), a polyphenol in green tea, BEAS-2B cells resisted LPS-induced apoptosis and restored the expression of GRP and its downstream effectors such as epidermal growth factor receptor and NF-kappa B, as analysed by immunoblotting and qPCR. Based on our findings, we objectify that cytoprotective functions of EGCG, via upregulation of GRP in cells challenged with LPS, are novel and can be further explored in a therapeutic point of view for diseases such as septic shock
    corecore