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Abstract

Three-dimensional (3D) hierarchically porous carbons have been extensively investigated as 

their large surface area and facile ion transport can provide high-performance in energy 

applications. Here we report new hierarchically porous carbon materials based on a polymer of 

intrinsic microporosity (PIM composed of ethanoeanthracene (EA) by Tröger base (TB) 

components (PIM-EA-TB)), for use in high-performance supercapacitor electrodes. 

Hierarchically structured carbon was prepared from nonsolvent-induced phase separation 

(NIPS) and subsequent carbonization. The intrinsic micropores of PIM-EA-TB and meso- and 

macro-pores formed via the NIPS process imbue the resulting carbon material with a 

hierarchical porous architecture with an exceptionally high surface area of 1966 m2 g-1 and a 

high electrical conductivity of 83.6 S cm-1. This well-organized structure provides pathways 

for efficient charge transportation, giving it a high specific capacitance of 46 F g-1 at 1 A g-1 

and an excellent specific energy of 17 W h kg-1 at a specific power of 1 kW kg-1.

Keywords : Polymers of intrinsic microporosity, Supercapacitor, Micropore, Hierarchical 
structure, Tröger’s base polymer
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1. Introduction

Supercapacitors (SCs), which are also known as electrochemical capacitors, have gained 

attention as promising energy storage devices that are capable of managing high power 

densities and have excellent cycle life, wide working temperature ranges, and good operational 

safety, allowing them to bridge the gap between batteries and conventional electrolytic 

capacitors [1-8]. These features are attributed to their charge storage mechanism, which is 

based on charge accumulation at the electrode/electrolyte interface [5, 9]. However, this 

mechanism limits the energy densities of SCs, which are typically only a tenth of those of 

conventional rechargeable batteries.

To achieve better SC performance, particularly with respect to capacitance and energy 

density, porous carbon materials including activated carbons (ACs), carbon nanotubes (CNTs), 

carbon aerogels, and graphene have been extensively studied due to their high electrical 

conductivity and ion-accessible surface area [10-13]. However, some reports have indicated 

that carbon nanomaterials that have only micropores can exhibit poor wetting of the electrode 

by the electrolyte ions, resulting in poor electrochemical performance [14, 15]. To overcome 

this issue, the use of three-dimensional (3D) hierarchical porous carbon materials with micro-, 

meso-, and macropores has frequently been suggested. Such trimodal pores provide a large 

surface area, good wetting, and suitable transport paths for both ions and electrons [16, 17]. 

Various 3D hierarchically structured carbons with well-defined pores and high electrical 

conductivity have been prepared for high-performance SCs [15, 18-24]. For example, Xu et al. 

reported that a 3D holey graphene framework with a hierarchically porous structure delivered 



4

an excellent gravimetric capacitance of 298 F g-1 and volumetric capacitance of 212 F cm-1 in 

an organic electrolyte [25]. We recently reported another successful example of 

nanostructuring, in which hierarchically structured porous carbon electrodes based on a 

polymer of intrinsic microporosity (PIM-1) were used to produce high-performance SCs [16]. 

PIM-1 exhibited a large specific surface area of 800 m2 g-1, which was mainly derived from 

inherent micropores less than 1 nm in size. Surprisingly, the carbonized material showed an 

enhanced specific surface area of ~2100 m2 g-1 and high electrical conductivity, while retaining 

its <1 nm micropores. Furthermore, meso- and macropores were simultaneously formed in the 

microporous PIM-1 matrix via nonsolvent-induced phase separation (NIPS) techniques, which 

allowed easy access of the electrolytes to the micropore regions. Benefiting from these 

attributes, the PIM-1-based hierarchically structured carbons delivered an excellent specific 

energy of 43.2 W h kg-1 at a specific power of 1.25 kW kg-1.

Based on the molecular design flexibility, solution processability, and intrinsic 

microporosity (which is retained or enhanced after carbonization) of PIMs, carbon materials 

based on PIMs have recently been investigated for use in energy and environmental 

applications [26-31]. PIM-EA-TB consisting of ethanoeanthracene (EA) and Tröger’s base 

(TB) units, have shown potential in gas separation and energy storage applications due to their 

higher intrinsic specific surface area (>1000 m2 g-1) and rigidity as compared to PIM-1 [26, 31-

35]. Marken et al. reported that PIM-EA-TB based microporous carbons with heteroatoms on 

their surface, made via a vacuum carbonization process exhibited pH-switchable 

supercapacitive properties [31]. However, their low electrical conductivity and relatively low 

surface area of 242 m2 g-1 were not optimised for this application. 

In this study, we demonstrate the properties of PIM-EA-TB-based hierarchically porous 
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carbon materials with high surface areas and electrical conductivity, prepared by NIPS and 

carbonization at 1100 °C, and tested their performance as SC electrodes. Notably, the resulting 

carbons showed a high specific surface area of 1966 m2 g-1 and electrical conductivity of 83.6 

S cm-1 without collapse of their porous structure. The supercapacitive performance parameters 

of the carbonized PIM-EA-TB materials, including capacitance, rate-retention capability, 

charge/discharge behavior, and cycle lives are explicitly discussed with a focus on the 

characteristics of the hierarchically structured carbons.

2. Experimental

2.1. Materials

All reagents used in this study were used as received without further purification unless 

otherwise noted. Dimethoxymethane (95%), chloroform (≥99.9%), and 1,2-dichlorobenzene 

(DB, 99%) were purchased from Sigma-Aldrich. Aqueous ammonium hydroxide solution (28–

30%, extra pure), methanol (99.5%), and n-hexane (95%) were purchased from Samchun 

chemicals. Trifluoroacetic acid (≥99%) was purchased from Tokyo Chemical Industry Co., Ltd. 

(TCI). Tetrahydrofuran (THF, stabilized, 99.5%) was purchased from J.T. Baker.

2.2. Preparation of materials

2.2.1. Synthesis of PIM-EA-TB

PIM-EA-TB was prepared by the method of Carta et al. [32]. Briefly, 2,6(7)-diamino-9,10-

dimethyl-9,10-dihydro-9,10-ethanoanthracene [32]; dimethoxymethane (20.1 mL, 226.9 

mmol) was added to 2,6(7)-diamino-9,10-dimethyl-9,10-dihydro-9,10-ethanoanthracene (12.0 
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g, 45.4 mmol) under a nitrogen atmosphere, and the solution was placed in an ice bath to lower 

its temperature. Trifluoroacetic acid (100.0 ml) was added dropwise over 30 min. The resulting 

mixture was stirred for 72 h at room temperature, producing a viscous solution. The solution 

was then precipitated in 17 wt% aqueous ammonium hydroxide solution, and the precipitate 

was filtered and washed with water and acetone three times, respectively. The crude polymer 

was dissolved in chloroform and reprecipitated from methanol three times, redissolved in 

chloroform, and finally reprecipitated from n-hexane to obtain the polymer as a fine powder. 

The white powder was refluxed for 24 h in methanol and then filtered, followed by rigorous 

drying in a vacuum oven. Yield: 12.6 g, 92.4%, 1H NMR (500 MHz, CDCl3): δH (ppm) = 6.98 

(br, m, 4H, Ar H), 4.60 (br, s, 2H, N-CH2-N), 4.04 (br, s, 4H, N-CH2-Ar), 1.79 (br, m, 6H, 2 

CH3), 1.53 (br, m, 4H, 2 CH2). Molar mass: Mn = 32700, Mw= 61900, PDI =1.89. Anal. Calcd 

for CHN (wt%): C, 83.96; H, 6.71; N, 9.33. Found: C, 79.28; H, 6.42; N, 8.64. BET surface 

area: 1090 m2 g-1; total pore volume: 0.66 cm3 g-1 at p/p0 = 0.99; Td 5% = 326 °C.

2.2.2. Preparation of hierarchically porous carbon (cNPIM) monolith

The cNPIM-EA-TB monolith was fabricated by the nonsolvent-induced phase separation 

(NIPS) method and subsequent carbonization. Briefly, PIM-EA-TB powder (1.0 g) was 

dissolved in a mixture of DB (3.13 g) and THF (12.53 g) at 35 °C with continuous stirring to 

form a 6 wt% homogeneous solution. The solution was then cast onto a clean flat glass plate 

with a 300 μm blade gap. The nascent casting solution was immersed in 500 mL of the 

nonsolvent methanol at room temperature for 24 h. A solid film was formed during the NIPS 

process. The film was removed from the coagulation bath and dried under ambient conditions 
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for 48 h. Finally, the film was carbonized in a tube furnace at 1100 °C under an H2/N2 

atmosphere using a heating rate of 5 °C min-1. The resulting carbon material was referred to as 

cNPIM-EA-TB. Carbonized PIM-EA-TB (cPIM-EA-TB) was prepared using the same 

procedure, except that the NIPS process was omitted. In the case of cNPIM-EA-TB, 

carbonization at 1100 °C with a hold time of 120 or 180 min resulted in 70 and 80% loss of the 

initial weight, respectively.

2.3. Characterization

The morphologies of the materials were recorded using a field emission scanning electron 

microscope (FE-SEM, Carl Zeiss (SigmaHD), In-Lens Detector, 10 kV) The Brunauer-

Emmett-Teller (BET) surface area and pore size distribution (PSD) were determined from the 

N2 adsorption–desorption isotherms at 77 K obtained using a Micromeritics 3Flex instrument. 

Prior to the BET surface area measurements, the samples were degassed for 30 min at 90 °C 

and for 24 h at 200 °C. The pore size distribution (PSD) of the carbonized PIM samples was 

calculated using the Horvath–Kawazoe method. The total pore volume was based on single 

point adsorption at P/P0 = 0.99. 1H nuclear magnetic resonance (NMR) spectra of PIM-EA-TB 

were recorded using a Bruker AVANCE Neo 500 MHz spectrometer in CDCl3. The number-

average molecular weight (Mn), weight-average molecular weight (Mw), and polydispersity 

index (PDI) of PIM-EA-TB were measured using gel permeation chromatography (GPC) in 

THF using Shodex columns (KF-800 series) at 40 °C. The signals were detected using a Waters 

2414 refractive index detector. Elemental analysis was obtained using a Thermo Scientific 

Flash 2000 Organic Elemental Analyzer equipped with a thermal conductivity detector (TCD). 
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Thermogravimetric analysis (TGA) was performed to determine the thermal stability of the 

PIM-EA-TB using TGA Q5000 V3.17 Build 265 from TA Instruments at a heating rate of 10 

°C min-1 from 25 to 800 °C under a N2 flow of 35 mL min-1. Fourier transform infrared (FTIR) 

spectroscopy was carried out using Bruker ALPHA-P and ALPHA-T instruments over the 

range 4000–400 cm-1. Raman spectra of the carbonized PIM-EA-TBs were acquired using a 

Renishaw inVia Reflex equipped with a 514 nm Ar-ion laser. XPS measurements were 

conducted using a Thermo VG Scientific Sigma probe spectrometer equipped with a 

monochromatic Al Kα source. A four-point probe station was used to measure the electrical 

properties of the samples. The electrical conductivity of each sample was calculated as follows: 

σ (S cm-1) = 1 / (Rsheet * t), where σ is the conductivity, Rsheet is the sheet resistance and t is the 

thickness of the sample. Electrochemical characterizations, including cyclic voltammetry 

(CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy 

(EIS), were performed using a SP-200 potentiostat (Bio-Logic, USA) in a two-electrode 

configuration at room temperature. 1.0 M tetraethylammonium tetrafluoroborate (TEA/BF4) in 

acetronitrile (ACN) was used as the electrolyte. The cell assembly and cell tests were carried 

out in an argon-filled glovebox. EIS was conducted over the frequency range 106 kHz–1 Hz at 

an amplitude of 5 mV. The specific capacitance was estimated from the GCD profiles using 

the following equation:

C=4I/[(⊿V/⊿t)m]

Where I is the applied current, ⊿V/⊿t is the slope of the discharge curve after the initial IR 

drop, and m is the total mass of the two electrodes. The specific power (P, in W kg-1) and 

energy (E, in Wh kg-1) were calculated using the following equations: 
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P=E/⊿t

E = 0.5C(⊿V)2/3600M

Where ⊿V, ⊿t, M, and C are the potential window obtained from the discharge curve after the 

IR drop, discharge time, mass of the electrodes (in kg), and measured capacitance, respectively. 
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3. Results and discussion

Monolithic hierarchically porous carbons based on a PIM were prepared via the following 

steps: PIM synthesis, fabrication of a hierarchically structured polymer film, and carbonization 

of the film. First, the shape-persistent ladder polymer PIM-EA-TB was synthesized via the 

polymerization of ethanoanthracene (EA) by the formation of Tröger’s base (TB) linking 

groups. The polymerization was monitored by 1H NMR, FT-IR, and elemental analysis (Fig. 

S1). The molecular weight (Mn) of the polymer was found to be ca. 32700 Da using gel 

permeation chromatography. In order to obtain high-molecular-weight PIM-EA-TB, which is 

important to cast a mechanically robust polymer film, care should be taken to acquire high 

purity diamino-ethanoanthracene monomer. Meso- and macropores were formed in 

intrinsically microporous PIM-EA-TB via nonsolvent-induced phase separation (NIPS). A 

PIM-EA-TB solution in a mixture of DB and THF (1:4 w/w) was cast on a flat glass plate and 

then submerged in a methanol bath. Through the solvent/nonsolvent exchange process, a free-

standing and hierarchically porous PIM-EA-TB film was formed (Fig. 1); the resulting opaque 

film was referred to as NPIM-EA-TB. The different solvent/nonsolvent exchange rates across 

the cross-section of PIM-EA-TB during the NIPS process induced the formation of many meso- 

and macropores. Specifically, a bicontinuous network structure with large open pores of 2 to 6 

µm was observed on the top surface of NPIM-EA-TB, which was exposed to air, as seen in the 

upper SEM image, while the bottom of the film, which was in contact with the glass substrate 

during NIPS, was less porous. The entire film contained micropores originating from PIM-EA-

TB, resulting in a hierarchical porous structure (Fig. S2 and S3). To fabricate hierarchically 

porous carbon monoliths, NPIM-EA-TB films were carbonized at 1100 °C; the resulting 

carbonized films were referred to as cNPIM-EA-TB_X, where X denotes the degree of 
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carbonization. Although carbonization reduced the area of the NPIM-EA-TB film by 25%, 

cross-sectional SEM images of cNPIM-EA-TB_80 (Fig. 1(c)) revealed that the hierarchically 

porous architecture with a pore size gradient in the surface normal direction was retained after 

carbonization.

 

Fig. 1. (a) Chemical structure of PIM-EA-TB. (b) Photographs of the PIM-EA-TB, 

NPIM-EA-TB, and cNPIM-EA-TB_80 films. (c) SEM images of cNPIM-EA-TB_80 

(Note: the scale bar in the magnified figures in the right column represents 500 nm). (d) 

TEM image of cNPIM-EA-TB_80.
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To investigate the porous structure of cNPIM-EA-TB, sorption measurements were 

conducted using N2 as the probe gas at 77 K (Table 1 and Fig. 2). The specific surface area 

and pore volume of cNPIM-EA-TB increased with increasing the holding time (120 vs. 180 

min) during carbonization at 1100 ℃, resulted in a degree of carbonisation of 70 and 80 wt%, 

respectively. It is noteworthy that cNPIM-EA-TB_80 exhibits a high BET surface area of 

1966 m2 g-1 and pore volume of 1.085 cm3 g-1. This surface area value is comparable to the 

most porous commercial activated carbons and almost twice as high as that of the pristine 

PIM-EA-TB precursor. The nitrogen sorption isotherms of cNPIM-EA-TB_70 and cNPIM-

EA-TB_80 were type-I/IV, indicating that these carbon materials were hierarchically porous, 

containing both micropores (as indicated by the steep increase in adsorption at a low relative 

pressure) and meso- and macropores (as indicated by the linear and finally convex shape of 

the curve at higher relative pressure). Notably, the hysteresis often observed for PIMs between 

the N2 adsorption and desorption curves is absent. The results demonstrate that cNPIM-EA-

TB retains its enhanced microporosity, centered at a pore diameter of 0.74 nm and exhibited 

a narrow pore size distribution (PSD), after carbonization, while other pore development 

Fig. 2. (a) N2 adsorption (filled circles)–desorption (open circles) isotherms, (b) pore 

size distribution of the micropores, and (c) BET surface area (m2 g-1) and total pore 

volume (cm3 g-1) as a function of the degree of carbonization (%) for cPIM-EA-TB with 

0, 70, and 80% degree of carbonization.
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processes such as the activation method can result in a broadened PSD. For cNPIM-EA-

TB_80, the micropore (d < 2 nm) volume was 0.893 cm3 g-1, while those of the mesopores (2 

< d < 50 nm) and macropores (300 nm > d > 50 nm) were both 0.192 cm3 g-1 (Table 1). These 

observations indicated that cNPIM-EA-TB_80 possesses a hierarchical structure, with 

micropores, centered at 0.74 nm, and large meso- and macropore volumes induced by the 

NIPS process.

Table 1. Pore characteristics of cNPIM-EA-TB_70 and cNPIM-EA-TB_80 

SBET (m2 g-1) Smicro (m2 g-1)a Vtotal  (cm3 g-1)b Vmicro (cm3 g-1)a

PIM-EA-TB 1090.2 1057.7 0.658 0.596

cNPIM-EA-TB_70 1793.9 1750.6 0.904 0.769

cNPIM-EA-TB_80 1966.1 1897.0 1.085 0.893

The chemical composition and structure of cNPIM-EA-TB were characterized using X-ray 

photoelectron spectroscopy (XPS), EDS analysis, XRD spectroscopy,and Raman 

spectroscopy (Fig. 3). The XPS data for cNPIM-EA-TB_80 indicate that the atomic 

composition of the surface was 98.59% C and 1.41% O, which was consistent with EDS 

analysis results, revealing that cNPIM-EA-TB_80 sample was a carbon material with well 

distributed small portion of oxygen atoms (Fig. S4).These results showed that the nitrogen 

atoms of PIM-EA-TB were removed completely during carbonization, and that the carbonized 

PIM-EA-TB consisted mainly of carbon atoms. In addition, XRD analysis showed that the 

a Micropore surface area and volume calculated using the t-plot method. b Total pore volume.
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characteristic peaks of both cNPIM-EA-TB 70 and 80 were positioned at 2 θ = 23° and 43°, 

corresponding to the reflections of the broad (002) and (100) planes, respectively, indicating 

that both cNPIM-EA-TB 70 and 80 samples were amorphous carbon (Fig. S5). Further, the 

molecular structure of the material was characterized using Raman spectroscopy. The two 

prominent peaks at 1350 and 1580 cm-1 corresponded to the D and G bands, which represent 

disordered and graphitic structures, respectively. The intensities of these bands indicated that 

the carbonized PIM-EA-TB had a disordered microstructure [36]. The ratios of the intensity 

of the D-band (ID) to the G-band intensity (IG) for cNPIM-EA-TB_70 and cNPIM-EA-TB_80 

were 1.30 and 1.35, respectively. The C 1s XPS spectra of cNPIM-EA-TB_70 and 80 were 

deconvoluted into five spectral peaks corresponding to sp2 carbon, sp3 carbon, C-O bonds 

(hydroxyl and epoxy), C=O bonds (carbonyl), and O-C=O bonds (carboxyl) [37, 38]. 

Although the cNPIM-EA-TB samples contained oxygen-containing functional groups, such 

as hydroxyl and carbonyl groups, these were present in small amounts, as the samples 

contained less than 2 wt% oxygen. Consequently, the cNPIM-EA-TB samples consisted 

mainly of carbon atoms, making them suitable as electrodes for electrical double layer-

capacitor (EDLC)-type SCs.
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In electrical double layer-capacitor (EDLC) type super capacitors, high-surface-area and high-

electrical-conductivity electrodes are the primary requirement for superior SC performance [4]. 

The electrical conductivity of the carbonized PIM-EA-TB was investigated using a four-point 

probe system, and found to be 148 S cm-1 for cNPIM-EA-TB_70 and 83.6 S cm-1 for cNPIM-

EA-TB_80, respectively. The specific surface area and electrical conductivity of cNPIM-EA-

TB_80 exceeded those of a number of notable examples in the literature, and were comparable 

Fig. 3. (a) XPS survey scan and (b) Raman spectra of cNPIM-EA-TB_70 and cNPIM-EA-

TB_80. Deconvoluted C 1s XPS spectra of (c) cNPIM-EA-TB_70 and (d) cNPIM-EA-

TB_80.
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to those of carbonized PIM-1 (Table S1) [16, 25, 39-41].

The electrochemical properties of the cNPIM-EA-TB_70 and cNPIM-EA-TB_80 electrodes 

were evaluated using cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) 

measurements in two-electrode mode. Fig. 4a and S6 show the CV curves of the cNPIM-EA-

TB_80 and 70 electrodes obtained by varying the voltage from 0 to 2.5 V at a constant scan 

rate of 50 mV s-1; no evident polarization was observed over the tested voltage window. A wide 

voltage window is particularly important for SCs, because energy density is proportional to the 

square of the voltage window according to the equation E=0.5CV2 [4]. The nearly rectangular 

CV curves indicated that the electrodes showed purely capacitive behavior [42]. Although the 

box-like shape of the CV curve at 10 mV s-1 was slightly distorted as the scan rate was increased 

due to the limited ion diffusion, its capacitive features were retained even at the very high scan 

rate of 1000 mV s-1, demonstrating good charge propagation across the electrodes (Fig. S7a,b) 

[43]. Interestingly, the current accumulated by the formation of electrode double layers (EDLs) 

for the cNPIM-EA-TB_80 electrode was more significant than for the cNPIM-EA-TB_70 

electrode, presumably due to the larger surface area of the former electrode (Fig. S8). The 

capacitive features of the cNPIM-EA-TB electrodes were further confirmed by performing 

GCD measurements over the current range of 0.88 to 12 A g-1 (Fig. 4b and S7c,d). The 

triangular charge–discharge profiles indicated ideal capacitive behavior, consistent with the 

CV results. The charge/discharge duration of the cNPIM-EA-TB electrodes increased with 

increasing degree of carbonization at a specific current of 1 A g-1. The corresponding specific 

capacitances were 41 and 46 F g-1 for cNPIM-EA-TB_70, and _80, respectively. Additionally, 

cNPIM-EA-TB_80 retained 73% of its low-current capacitance at a high specific current of 12 

A g-1, demonstrating its excellent rate-retention capability (Fig. 4c). The good electrochemical 
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properties of the cNPIM-EA-TB_80 electrode were attributed to its large surface area, which 

could contribute to the formation of EDLs and high electrical conductivity. This speculation 

was corroborated by EIS measurements over the frequency range 106–1 Hz. Fig. 4d shows the 

Nyquist plots of the cNPIM-EA-TB_70 and _80 electrodes. The equivalent series resistance 

(ESR) that appears at the intercept of the x-axis (the so-called real part) of the Nyquist plot is 

associated with the electrode resistance, electrolyte resistance, and contact resistance between 

the current collector and electrode [44, 45]. The ESRs of cNPIM-EA-TB_70 and _80 were 2.9 

and 2.6 Ω, respectively. These results demonstrated that the pore creation process using NIPS 

followed by carbonization did not have a detrimental effect on the electric properties of the 

PIM electrode. The semicircle in the high-frequency to mid-frequency region of the Nyquist 

plot was attributed to interfacial charge transfer resistance (RCT)[42]. The higher degree of 

carbonization of cNPIM-EA-TB_80 resulted in a smaller RCT (25 Ω) than that of cNPIM-EA-

TB_70 (42 Ω). The nearly vertical slope of the PIM-based materials in the low-frequency 

region also indicates ideal capacitive behavior. 

The cycle life of the cNPIM-EA-TB_80 electrode was estimated by using 10000 GCD cycles 

at a constant specific current of 1.7 A g-1 (Fig. 4e). Notably, 90% of the specific capacitance 

during the first cycle was preserved after 10000 GCD cycles. No columbic efficiency fading 

and morphological change were also observed at the end of the test (Fig. S9). Fig. 4f shows 

the Ragone plots of the PIM-based electrodes; their energy density was ~17 Wh kg-1 at a 

power density of 1 kW kg-1. This value exceeds or is comparable to the energy densities of 

state-of-the-art SCs (Table S2) [46-52]. The good capacitive and electrical properties of 

cNPIM-EA-TB electrodes are attributed to its 3D porous hierarchical structure. The 

macropores of the hierarchical structure are mostly filled by electrolytes and form continuous 
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phase, acting as ion-buffering reservoirs. Via the mesopores that seamlessly bridge the gap 

between macro- and micropores, the electrolyte ions can reach to micropores that play a 

primarily role in providing exceptional specific surface area of 1966 m2 g-1. The electrons can 

also transport through continuous phase of cNPIM-EA-TB framework, leading to a good 

electrical conductivity. 
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Fig. 4. (a) CV curves of cNPIM-EA-TB_80 electrodes at a scan rate of 50 mV s-1 over the 
voltage window of 0 to 2.5 V. (b) GCD profiles (at 1 A g-1), (c) rate-retention capability, and 
(d) Nyquist plots of the cNPIM-EA-TB_70 and _80 electrodes. (e) Long-term cycle stability 
of the cNPIM-EA-TB_80 electrodes over 10000 GCD cycles at a constant current of 1.7 A g-

1. C0 is the initial capacitance and C is the capacitance at the indicated number of cycles. (f) 
The Ragone plots of the cNPIM-EA-TB based electrode.

4. Conclusions

Starting from the intrinsically microporous polymer PIM-EA-TB, we successfully prepared 

hierarchically structured carbon electrodes (cNPIM-EA-TB) for high-performance SCs. The 

hierarchically porous carbon materials were fabricated by the synthesis of PIM-EA-TB, NIPS 

processing of a PIM-EA-TB solution, and subsequent carbonization of the resulting films. 
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Notably, the use of an intrinsically microporous polymer ensures that the resulting carbon 

materials have both high surface area and electrical conductivity, while preserving their initial 

microporous architecture. The cPIM-EA-TB electrodes showed excellent SC performance 

with a high specific capacitance, good rate-retention capability, and good specific energy and 

power. Thus, PIM-EA-TB represents a promising new precursor material for the preparation 

of 3D hierarchically structured carbon materials for energy and environmental applications.
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PIM-EA-TB based hierarchically structured carbon for supercapacitor electrodes.

Phase separation process introduces meso-&macro-pores into the microporous polymer.

The hierarchical structure is retained even after carbonization.

The resulting carbon shows a high surface area and a good electrical conductivity.

These characteristics gives it a high specific capacitance at a specific power.


