32 research outputs found

    The Role of TNF-α in Mice with Type 1- and 2- Diabetes

    Get PDF
    Background: Previously, we have demonstrated that short-term treatment of new onset diabetic Non-obese diabetic (NOD) mice, mice that are afflicted with both type 1 (T1D) and type 2 (T2D) diabetes with either Power Mix (PM) regimen or alpha1 antitrypsin (AAT) permanently restores euglycemia, immune tolerance to self-islets and normal insulin signaling. Methodology and Principal Findings: To search for relevant therapeutic targets, we have applied genome wide transcriptional profiling and systems biology oriented bioinformatics analysis to examine the impact of the PM and AAT regimens upon pancreatic lymph node (PLN) and fat, a crucial tissue for insulin dependent glucose disposal, in new onset diabetic non-obese diabetic (NOD) mice. Systems biology analysis identified tumor necrosis factor alpha (TNF-α\alpha) as the top focus gene hub, as determined by the highest degree of connectivity, in both tissues. In PLNs and fat, TNF-α\alpha interacted with 53% and 32% of genes, respectively, associated with reversal of diabetes by previous treatments and was thereby selected as a therapeutic target. Short-term anti-TNF-α\alpha treatment ablated a T cell-rich islet-invasive and beta cell-destructive process, thereby enhancing beta cell viability. Indeed anti-TNF-α\alpha treatment induces immune tolerance selective to syngeneic beta cells. In addition to these curative effects on T1D anti-TNF-e33254 treatment restored in vivo insulin signaling resulting in restoration of insulin sensitivity. Conclusions: In short, our molecular analysis suggested that PM and AAT both may act in part by quenching a detrimental TNF-α\alpha dependent effect in both fat and PLNs. Indeed, short-term anti-TNF-α\alpha mAb treatment restored enduring euglycemia, self-tolerance, and normal insulin signaling

    IL-33 Induces IL-9 Production in Human CD4+ T Cells and Basophils

    Get PDF
    IL-33, an IL-1 family member and ligand for the IL-1 receptor-related protein ST2, has been associated with induction of Th2 cytokines such as IL-4, IL-5, and IL-13. Here, we report that IL-33 can initiate IL-9 protein secretion in vitro in human CD4+ T cells and basophils isolated from peripheral blood. TGF-β has been described as a critical factor for IL-9 induction in Th2 cells; however, we found that TGF-β also induces co-production of IL-9 in purified, naïve (>99%) CD4+CD45RA+CD45RO−CD25− T cells differentiated towards a Th1 profile. Subsequently, it was demonstrated that TGF-β is important, although not an absolute requirement, for IL-9 production in CD4+ T cells. IL-9 production by purified (>95%) human basophils, cultured for 24 h with IL-3 or IL-33, was found, with a strong synergy between the two, likely to be explained by the IL-3 upregulated ST2 expression. Collectively, these data indicate that barrier functioning cells are important for the regulation of IL-9 production by immune cells in inflamed tissue

    Differentiation and Recruitment of Th9 Cells Stimulated by Pleural Mesothelial Cells in Human Mycobacterium tuberculosis Infection

    Get PDF
    Newly discovered IL-9–producing CD4+ helper T cells (Th9 cells) have been reported to contribute to tissue inflammation and immune responses, however, differentiation and immune regulation of Th9 cells in tuberculosis remain unknown. In the present study, our data showed that increased Th9 cells with the phenotype of effector memory cells were found to be in tuberculous pleural effusion as compared with blood. TGF-β was essential for Th9 cell differentiation from naïve CD4+ T cells stimulated with PMA and ionomycin in vitro for 5 h, and addition of IL-1β, IL-4 or IL-6 further augmented Th9 cell differentiation. Tuberculous pleural effusion and supernatants of cultured pleural mesothelial cells were chemotactic for Th9 cells, and this activity was partly blocked by anti-CCL20 antibody. IL-9 promoted the pleural mesothelial cell repairing and inhibited IFN-γ-induced pleural mesothelial cell apoptosis. Moreover, pleural mesothelial cells promoted Th9 cell differentiation by presenting antigen. Collectively, these data provide new information concerning Th9 cells, in particular the collaborative immune regulation between Th9 cells and pleural mesothelial cells in human M. tuberculosis infection. In particular, pleural mesothelial cells were able to function as antigen-presenting cells to stimulate Th9 cell differentiation

    Resistance of Renal Cell Carcinoma to Sorafenib Is Mediated by Potentially Reversible Gene Expression

    Get PDF
    Purpose: Resistance to antiangiogenic therapy is an important clinical problem. We examined whether resistance occurs at least in part via reversible, physiologic changes in the tumor, or results solely from stable genetic changes in resistant tumor cells. Experimental Design: Mice bearing two human RCC xenografts were treated with sorafenib until they acquired resistance. Resistant 786-O cells were harvested and reimplanted into naïve mice. Mice bearing resistant A498 cells were subjected to a 1 week treatment break. Sorafenib was then again administered to both sets of mice. Tumor growth patterns, gene expression, viability, blood vessel density, and perfusion were serially assessed in treated vs control mice. Results: Despite prior resistance, reimplanted 786-O tumors maintained their ability to stabilize on sorafenib in sequential reimplantation steps. A transcriptome profile of the tumors revealed that the gene expression profile of tumors upon reimplantation reapproximated that of the untreated tumors and was distinct from tumors exhibiting resistance to sorafenib. In A498 tumors, revascularization was noted with resistance and cessation of sorafenib therapy and tumor perfusion was reduced and tumor cell necrosis enhanced with re-exposure to sorafenib. Conclusions: In two RCC cell lines, resistance to sorafenib appears to be reversible. These results support the hypothesis that resistance to VEGF pathway therapy is not solely the result of a permanent genetic change in the tumor or selection of resistant clones, but rather is due to a great extent to reversible changes that likely occur in the tumor and/or its microenvironment

    Mapping Differentiation under Mixed Culture Conditions Reveals a Tunable Continuum of T Cell Fates

    Get PDF
    Cell differentiation is typically directed by external signals that drive opposing regulatory pathways. Studying differentiation under polarizing conditions, with only one input signal provided, is limited in its ability to resolve the logic of interactions between opposing pathways. Dissection of this logic can be facilitated by mapping the system's response to mixtures of input signals, which are expected to occur in vivo, where cells are simultaneously exposed to various signals with potentially opposing effects. Here, we systematically map the response of naïve T cells to mixtures of signals driving differentiation into the Th1 and Th2 lineages. We characterize cell state at the single cell level by measuring levels of the two lineage-specific transcription factors (T-bet and GATA3) and two lineage characteristic cytokines (IFN-γ and IL-4) that are driven by these transcription regulators. We find a continuum of mixed phenotypes in which individual cells co-express the two lineage-specific master regulators at levels that gradually depend on levels of the two input signals. Using mathematical modeling we show that such tunable mixed phenotype arises if autoregulatory positive feedback loops in the gene network regulating this process are gradual and dominant over cross-pathway inhibition. We also find that expression of the lineage-specific cytokines follows two independent stochastic processes that are biased by expression levels of the master regulators. Thus, cytokine expression is highly heterogeneous under mixed conditions, with subpopulations of cells expressing only IFN-γ, only IL-4, both cytokines, or neither. The fraction of cells in each of these subpopulations changes gradually with input conditions, reproducing the continuous internal state at the cell population level. These results suggest a differentiation scheme in which cells reflect uncertainty through a continuously tuneable mixed phenotype combined with a biased stochastic decision rather than a binary phenotype with a deterministic decision

    T Regulatory Cells Are Markers of Disease Activity in Multiple Sclerosis Patients

    Get PDF
    FoxP3+ Treg cells are believed to play a role in the occurrence of autoimmunity and in the determination of clinical recurrences. Contradictory reports are, however, available describing frequency and function of Treg cells during autoimmune diseases. We examined, by both polychromatic flow cytometry, and real-time RT-PCR, several Treg markers in peripheral blood mononuclear cells from patients with multiple sclerosis (MS), an autoimmune disease affecting the central nervous system. We found that Tregs, as defined by CD25, CD39, FoxP3, CTLA4, and GITR expression, were significantly decreased in stable MS patients as compared to healthy donors, but, surprisingly, restored to normal levels during an acute clinical attack. We conclude that Treg cells are not involved in causing clinical relapses, but rather react to inflammation in the attempt to restore homeostasis

    O-Glycosylation Regulates Ubiquitination and Degradation of the Anti-Inflammatory Protein A20 to Accelerate Atherosclerosis in Diabetic ApoE-Null Mice

    Get PDF
    Background: Accelerated atherosclerosis is the leading cause of morbidity and mortality in diabetic patients. Hyperglycemia is a recognized independent risk factor for heightened atherogenesis in diabetes mellitus (DM). However, our understanding of the mechanisms underlying glucose damage to the vasculature remains incomplete. Methodology/Principal Findings: High glucose and hyperglycemia reduced upregulation of the NF-κB inhibitory and atheroprotective protein A20 in human coronary endothelial (EC) and smooth muscle cell (SMC) cultures challenged with Tumor Necrosis Factor alpha (TNF), aortae of diabetic mice following Lipopolysaccharide (LPS) injection used as an inflammatory insult and in failed vein-grafts of diabetic patients. Decreased vascular expression of A20 did not relate to defective transcription, as A20 mRNA levels were similar or even higher in EC/SMC cultured in high glucose, in vessels of diabetic C57BL/6 and FBV/N mice, and in failed vein grafts of diabetic patients, when compared to controls. Rather, decreased A20 expression correlated with post-translational O-Glucosamine-N-Acetylation (O-GlcNAcylation) and ubiquitination of A20, targeting it for proteasomal degradation. Restoring A20 levels by inhibiting O-GlcNAcylation, blocking proteasome activity, or overexpressing A20, blocked upregulation of the receptor for advanced glycation end-products (RAGE) and phosphorylation of PKCβII, two prime atherogenic signals triggered by high glucose in EC/SMC. A20 gene transfer to the aortic arch of diabetic ApoE null mice that develop accelerated atherosclerosis, attenuated vascular expression of RAGE and phospho-PKCβII, significantly reducing atherosclerosis. Conclusions: High glucose/hyperglycemia regulate vascular A20 expression via O-GlcNAcylation-dependent ubiquitination and proteasomal degradation. This could be key to the pathogenesis of accelerated atherosclerosis in diabetes

    Self-tolerance in multiple sclerosis

    Get PDF
    During the last decade, several defects in self-tolerance have been identified in multiple sclerosis. Dysfunction in central tolerance leads to the thymic output of antigen-specific T cells with T cell receptor alterations favouring autoimmune reactions. In addition, premature thymic involution results in a reduced export of naïve regulatory T cells, the fully suppressive clone. Alterations in peripheral tolerance concern costimulatory molecules as well as transcriptional and epigenetic mechanisms. Recent data underline the key role of regulatory T cells that suppress Th1 and Th17 effector cell responses and whose immunosuppressive activity is impaired in patients with multiple sclerosis. Those recent observations suggest that a defect in self-tolerance homeostasis might be the primary mover of multiple sclerosis leading to subsequent immune attacks, inflammation and neurodegeneration. The concept of multiple sclerosis as a consequence of the failure of central and peripheral tolerance mechanisms to maintain a self-tolerance state, particularly of regulatory T cells, may have therapeutic implications. Restoring normal thymic output and suppressive functions of regulatory T cells appears an appealing approach. Regulatory T cells suppress the general local immune response via bystander effects rather than through individual antigen-specific responses. Interestingly, the beneficial effects of currently approved immunomodulators (interferons β and glatiramer acetate) are associated with a restored regulatory T cell homeostasis. However, the feedback regulation between Th1 and Th17 effector cells and regulatory T cells is not so simple and tolerogenic mechanisms also involve other regulatory cells such as B cells, dendritic cells and CD56bright natural killer cells

    Multiple sclerosis: a study of chemokine receptors and regulatory T cells in relation to MRI variables

    No full text
    Magnetic resonance imaging (MRI) remains the most valuable tool for monitoring disease activity and progression in patients with multiple sclerosis (MS), a chronic demyelinating disease of the central nervous system (CNS) with presumably autoimmune etiology. Chemokine receptors have been implicated in MS as key molecules directing inflammatory cells into the CNS. Regulatory (CD4+CD25+) T cells (Tr cells) are important in suppressing autoimmunity, and their absolute or functional deficit could be expected in MS. In the present study, venous blood was obtained from MS patients concurrent with MRI examination of the brain, and expression of chemokine receptors CCR1, CCR2, CCR5, CXCR3 and CXCR4 by CD4 T cells and monocytes, proportions of Tr cells, as well as expression of CD45RO, CD95, CTLA-4, HLA-DR and interleukin (IL)-10 by Tr cells and non-Tr (CD25-) CD4 T cells was analyzed by flow cytometry. Surface expression of CXCR3 by CD4 T cells was downregulated in the group of patients with high lesion load (LL) on T2-weighted images and gadolinium (Gd)-enhancing lesions on T1-weighted images, compared to the group with high LL and no Gd-enhancing lesions, and to the group with low LL, suggesting internalization of CXCR3 due to the release of its chemokine ligand (IP-10/CXCL10) from active MS lesions. Proportions of Tr cells amongst all CD4 T cells, and expression of IL-10 by Tr cells were increased in the patients with high LL and Gd-enhancing lesions. These results suggest that there is correlation between MRI parameters, chemokine receptor expression and the status of circulating Tr cells in MS, but further studies need to discriminate between pathogenetically relevant and bystander phenomena

    Expression of CD39 by human peripheral blood CD4+ CD25+ T cells denotes a regulatory memory phenotype

    Full text link
    We have shown that CD39 and CD73 are co-expressed on the surface of murine CD4+Foxp3+ regulatory T cells (Treg) and generate extracellular adenosine, contributing to Treg immunosuppressive activity. We now describe that CD39, independently of CD73, is expressed by a subset of blood derived human CD4+CD25+CD127lo T regulatory cells (Treg), defined by robust expression of Foxp3. A further distinct population of CD4+CD39+ T lymphocytes can be identified, which do not express CD25 and FoxP3 and exhibit the memory effector cellular phenotype. Differential expression of CD25 and CD39 on circulating CD4+ T cells distinguishes between Treg and pathogenic cellular populations that secrete pro-inflammatory cytokines such as IFNγ and IL-17. These latter cell populations are increased, with a concomitant decrease in the CD4+CD25+CD39+ Tregs, in the peripheral blood of patients with renal allograft rejection. We conclude that the ectonucleotidase CD39 is a useful and dynamic lymphocytes surface marker that can be used to identify different peripheral blood T cell populations to allow tracking of these in health and disease, as in renal allograft rejection
    corecore