46 research outputs found

    Low-energy electron diffraction study of potassium adsorbed on single-crystal graphite and highly oriented pyrolytic graphite

    Get PDF
    Potassium adsorption on graphite has been a model system for the understanding of the interaction of alkali metals with surfaces. The geometries of the s232d structure of potassium on both single-crystal graphite (SCG) and highly oriented pyrolytic graphite (HOPG) were investigated for various preparation conditions for graphite temperatures between 55 and 140 K. In all cases, the geometry was found to consist of K atoms in the hollow sites on top of the surface. The K-graphite average perpendicular spacing is 2.79±0.03 Å, corresponding to an average C-K distance of 3.13±0.03 Å, and the spacing between graphite planes is consistent with the bulk spacing of 3.35 Å. No evidence was observed for a sublayer of potassium. The results of dynamical LEED studies for the clean SCG and HOPG surfaces indicate that the surface structures of both are consistent with the truncated bulk structure of graphite

    Coverage-dependent structural phase transformations in the adsorption of pentacene on an aperiodically modulated Cu film

    Get PDF
    Surface ordering of pentacene molecules adsorbed on an aperiodic Cu surface has been studied with density functional theory (DFT) and scanning tunnelling microscopy as a function of coverage. Below 0.73 ML (5.3 × 1013 molecules cm−2), the adsorbate structure is row-like with the molecular axes aligned with the rows in the Cu structure. Between this coverage and 1 ML (7.3 × 1013 molecules cm−2), a structural phase with a checkerboard structure is seen. At this coverage region, the molecules are very close to each other which leads to unusual bending. At higher coverages, a further phase transition to a high-density row structure is seen for most of the film. DFT with van der Waals functionals is employed to study how the molecule-molecule and molecule-surface interactions evolve as a function of coverage

    Surface Geometry of C60 on Ag(111)

    Get PDF
    The geometry of adsorbed C60 influences its collective properties. We report the first dynamical low-energy electron diffraction study to determine the geometry of a C60 monolayer, Ag(111)-(23×23)30°-C60, and related density functional theory calculations. The stable monolayer has C60 molecules in vacancies that result from the displacement of surface atoms. C60 bonds with hexagons down, with their mirror planes parallel to that of the substrate. The results indicate that vacancy structures are the rule rather than the exception for C60 monolayers on close-packed metal surfaces. © 2009 The American Physical Society

    The structural analysis of Cu(111)-Te (√3 × √3) R30° and (2√3 × 2√3)R30° surface phases by quantitative LEED and DFT,

    Get PDF
    The chemisorption of tellurium on atomically clean Cu(111) surface has been studied under ultra-high vacuum conditions. At room temperature, the initial stage of growth was an ordered 23×23R30° phase (0.08 ML). An ordered 3×3R30° phase is formed at 0.33 ML coverage of Te. The adsorption sites of the Te atoms on the Cu(111) surface at 0.08 ML and 0.33 ML coverages are explored by quantitative low energy electron diffraction (LEED) and density functional theory (DFT). Our results indicate that substitutional surface alloy formation starts at very low coverages

    Archimedean-like colloidal tilings on substrates with decagonal and tetradecagonal symmetry

    Full text link
    Two-dimensional colloidal suspensions subject to laser interference patterns with decagonal symmetry can form an Archimedean-like tiling phase where rows of squares and triangles order aperiodically along one direction [J. Mikhael et al., Nature 454, 501 (2008)]. In experiments as well as in Monte-Carlo and Brownian dynamics simulations, we identify a similar phase when the laser field possesses tetradecagonal symmetry. We characterize the structure of both Archimedean-like tilings in detail and point out how the tilings differ from each other. Furthermore, we also estimate specific particle densities where the Archimedean-like tiling phases occur. Finally, using Brownian dynamics simulations we demonstrate how phasonic distortions of the decagonal laser field influence the Archimedean-like tiling. In particular, the domain size of the tiling can be enlarged by phasonic drifts and constant gradients in the phasonic displacement. We demonstrate that the latter occurs when the interfering laser beams are not adjusted properly
    corecore