19 research outputs found

    Broadband Antireflection with Halide Perovskite Metasurfaces

    Get PDF
    Meta-optics based on optically resonant dielectric nanostructures is a rapidly developing research field with many potential applications. Halide perovskite metasurfaces have emerged recently as a novel platform for meta-optics, and they offer unique opportunities for control of light in optoelectronic devices. Here, the generalized Kerker conditions are employed to overlap electric and magnetic Mie resonances in each meta-atom of MAPbBr3 perovskite metasurface, and broadband suppression of reflection down to 4% is demonstrated. Furthermore, it is revealed that metasurface nanostructuring is also beneficial for the enhancement of photoluminescence. These results may be useful for applications of nanostructured halide perovskites in photovoltaics and semi-transparent multifunctional metadevices where reflection reduction is important for their high efficiency.This work was supported by the Russian Science Foundation (project no19-73-30023), the Australian Research Council (grant DP200101168), andthe Strategic Fund of the Australian National Universit

    Antisymmetric exchange in La-substituted BiFe0.5Sc0.5O3 system: symmetry adapted distortion modes approach

    Get PDF
    Neutron powder diffraction measurements on the 35 % La-substituted Bi1-xLaxFe0.5Sc0.5O3-composition revealed that the samples obtained under high-pressure (6 GPa) and high-temperature (1500 K) conditions crystalize into a distorted perovskite structure with the orthorhombic Pnma symmetry and the unit cell para-meters: a(0) = 5.6745(2) angstrom, b(0) = 7.9834(3) angstrom and c(0) = 5.6310(2) angstrom. A long-range magnetic ordering takes place below 220 K and implies a G-type magnetic structure with the moments 4.10(4)mu(B) per Fe aligned predominately along the orthorhombic c-axis. The space group representation theory using the orthorhombic symmetry yields four bi-linear coupling schemes for the magnetic order parameters imposed by antisymmetric exchange interactions. The couplings are analysed based on symmetry adapted distortion modes defined in respect of the undistorted cubic perovskite structure. The approach allows a quantitative estimation of the coupling strength. It is shown that the experimentally found spin configuration combines the magnetic order parameters coupled by the atomic displacement modes with the largest amplitudes. The results indicate that the antisymmetric exchange is the dominant anisotropic term which fully controls the direction of the Fe3+ spins in the distorted perovskite lattice

    Single-particle perovskite lasers: from material properties to cavity design

    No full text
    Last decade, halide perovskites demonstrate high potential for efficient, tunable, and cheap photonic sources. Recently, single-particle perovskite lasers of various compositions and shapes with all dimensions close or smaller than the emitted wavelengths were demonstrated experimentally in a broad range of temperatures. In this review, we aim to cover not only the recent progress in the single-particle perovskite lasers but also provide a comprehensive analysis on strategies to achieve the most compact perovskite lasers with the best working parameters

    Numerical thermal simulation of cryoexposure using Ansys

    Get PDF
    The current advances and problems of medical cryoexposure thermal simulation are considered. Recommendations on improving geometric models, thermophysical properties, boundary conditions, and for parameterizing of the computational domain are proposed. These recommendations can be applied to most modern FEA software packages (tested in Ansys CFX 19.2). Examples of cryoablation and cryotherapy simulation are presented

    Numerical thermal simulation of cryoexposure using Ansys

    No full text
    The current advances and problems of medical cryoexposure thermal simulation are considered. Recommendations on improving geometric models, thermophysical properties, boundary conditions, and for parameterizing of the computational domain are proposed. These recommendations can be applied to most modern FEA software packages (tested in Ansys CFX 19.2). Examples of cryoablation and cryotherapy simulation are presented

    Enhanced terahertz emission from imprinted halide perovskite nanostructures

    No full text
    Lead halide perovskites were known to be a prospective family of materials for terahertz (THz) generation. On the other hand, perovskite nanostructures, nanoantennas, and metasurfaces allow tailoring perovskites optical characteristics, resulting in more efficient interaction with incident or emitted light. Moreover, the perovskites are robust materials against formation of defects caused by mechanical deformations and can be efficiently nanostructured by various high throughput methods. In this work, we have enhanced THz emission from MAPbI3 perovskite upon femtosecond laser irradiation using nanoimprint lithography. The formed nanostructures not only improve absorption of the incident laser pulses, but also lead to a non-symmetric near-field distribution. As a result, we have enhanced the efficiency of THz emission from the nanostructured perovskite by 3.5 times as compared with a smooth perovskite film. Our results paved the way for a new application of large-scale perovskite nanostructuring, making halide perovskites competitive with more expensive conventional semiconductors for THz generation

    Complex antipolar root 2 x 4 x 2 root 2 structure with Pnma symmetry in BiFeO3 and BiFe1/2Sc1/2O3: First-principles calculations

    No full text
    First principles calculations are done for a root 2 x 4 x 2 root 2 Pnma structure, which has been recently discussed in several attempts to describe experiments in complex magnetoelectric perovskites and which experimentally was shown to compete with several ferroelectric phases. This makes these materials extremely attracting as switchers, starters, field-stimulated capacitors, high-voltage converters, transmitters, etc. The relative energies of the root 2 x 4 x 2 root 2 Pnma structure have been calculated from first principles and analyzed as a function of pressure in BiFeO3. The stability of two polymorphs of the root 2 x 4 x 2 root 2 Pnma structure has been studied for solid solution BiFe1/2Sc1/2O3. The main distortions and relative energies of these two polymorphs in BiFe1/2Sc1/2O3, in terms of Pm (3) over barm parent symmetry, have been calculated from first principles as well

    Light-Controlled Multiphase Structuring of Perovskite Crystal Enabled by Thermoplasmonic Metasurface

    No full text
    Halide perovskites belong to an important family of semiconducting materials with electronic properties that enable a myriad of applications, especially in photovoltaics and optoelectronics. Their optical properties, including photoluminescence quantum yield, are affected and notably enhanced at crystal imperfections where the symmetry is broken and the density of states increases. These lattice distortions can be introduced through structural phase transitions, allowing charge gradients to appear near the interfaces between phase structures. In this work, we demonstrate controlled multiphase structuring in a single perovskite crystal. The concept uses cesium lead bromine (CsPbBr3) placed on a thermoplasmonic TiN/Si metasurface and enables single-, double-, and triple-phase structures to form on demand above room temperature. This approach promises application horizons of dynamically controlled heterostructures with distinctive electronic and enhanced optical properties

    Recrystallization of CsPbBr<sub>3</sub> Nanoparticles in Fluoropolymer Nonwoven Mats for Down- and Up-Conversion of Light

    No full text
    Inorganic halides perovskite CsPbX3 (X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) nanoparticles are efficient light-conversion objects that have attracted significant attention due to their broadband tunability over the entire visible spectral range of 410–700 nm and high quantum yield of up to 95%. Here, we demonstrate a new method of recrystallization of CsPbBr3 nanoparticles inside the electrospun fluoropolymer fibers. We have synthesized nonwoven tetrafluoroethylene mats embedding CsPbBr3 nanoparticles using inexpensive commercial precursors and syringe electrospinning equipment. The fabricated nonwoven mat samples demonstrated both down-conversion of UV light to 506 nm and up-conversion of IR femtosecond laser radiation to 513 nm green photoluminescence characterized by narrow emission line-widths of 35 nm. Nanoparticle formation inside nonwoven fibers was confirmed by TEM imaging and water stability tests controlled by fluorimetry measurements. The combination of enhanced optical properties of CsPbBr3 nanoparticles and mechanical stability and environmental robustness of highly deformable nonwoven fluoropolymer mats is appealing for flexible optoelectronic applications, while the industry-friendly fabrication method is attractive for commercial implementations

    Pt/C and Pt/SnOx/C Catalysts for Ethanol Electrooxidation: Rotating Disk Electrode Study

    No full text
    Pt/C and Pt/SnOx/C catalysts were synthesized using the polyol method. Their structure, morphology and chemical composition were studied using a scanning electron microscope equipped with an energy dispersive X-ray spectrometer, transition electron microscope and X-ray photoelectron spectroscope. Electrochemical measurements were based on the results of rotating disk electrode (RDE) experiments applied to ethanol electrooxidation. The quick evaluation of catalyst activity, electrochemical behavior, and an average number of transferred electrons were made using the RDE technique. The usage of SnOx (through the carbon support modification) in a binary system together with Pt causes a significant increase of the catalyst activity in ethanol oxidation reaction and the utilization of ethanol
    corecore