62 research outputs found
Periodontal dysbiosis associates with reduced CSF Aβ42 in cognitively normal elderly
Introduction: Periodontal disease is a chronic, inflammatory bacterial dysbiosis that is associated with both Alzheimer's disease (AD) and Down syndrome. /
Methods: A total of 48 elderly cognitively normal subjects were evaluated for differences in subgingival periodontal bacteria (assayed by 16S rRNA sequencing) between cerebrospinal fluid (CSF) biomarker groups of amyloid and neurofibrillary pathology. A dysbiotic index (DI) was defined at the genus level as the abundance ratio of known periodontal bacteria to healthy bacteria. Analysis of variance/analysis of covariance (ANOVA/ANCOVA), linear discriminant effect‐size analyses (LEfSe) were used to determine the bacterial genera and species differences between the CSF biomarker groups. /
Results: At genera and species levels, higher subgingival periodontal dysbiosis was associated with reduced CSF amyloid beta (Aβ)42 (P = 0.02 and 0.01) but not with P‐tau. /
Discussion: We show a selective relationship between periodontal disease bacterial dysbiosis and CSF biomarkers of amyloidosis, but not for tau. Further modeling is needed to establish the direct link between oral bacteria and Aβ
TLR9 ligation in pancreatic stellate cells promotes tumorigenesis
Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis
Nanotechnology intervention of the microbiome for cancer therapy
The microbiome is emerging as a key player and driver of cancer. Traditional modalities to manipulate the microbiome (for example, antibiotics, probiotics and microbiota transplants) have been shown to improve efficacy of cancer therapies in some cases, but issues such as collateral damage to the commensal microbiota and consistency of these approaches motivates efforts towards developing new technologies specifically designed for the microbiome–cancer interface. Considering the success of nanotechnology in transforming cancer diagnostics and treatment, nanotechnologies capable of manipulating interactions that occur across microscopic and molecular length scales in the microbiome and the tumour microenvironment have the potential to provide innovative strategies for cancer treatment. As such, opportunities at the intersection of nanotechnology, the microbiome and cancer are massive. In this Review, we highlight key opportunistic areas for applying nanotechnologies towards manipulating the microbiome for the treatment of cancer, give an overview of seminal work and discuss future challenges and our perspective on this emerging area
Mycoplasma salivarium as a Dominant Coloniser of Fanconi Anaemia Associated Oral Carcinoma
Henrich B, Rumming M, Sczyrba A, et al. Mycoplasma salivarium as a Dominant Coloniser of Fanconi Anaemia Associated Oral Carcinoma. PLoS ONE. 2014;9(3): e92297.Mycoplasma salivarium belongs to the class of the smallest self-replicating Tenericutes and is predominantly found in the oral cavity of humans. In general it is considered as a non-pathogenic commensal. However, some reports point to an association with human diseases. M. salivarium was found e.g. as causative agent of a submasseteric abscess, in necrotic dental pulp, in brain abscess and clogged biliary stent. Here we describe the detection of M. salivarium on the surface of a squamous cell carcinoma of the tongue of a patient with Fanconi anaemia (FA). FA is an inherited bone marrow failure syndrome based on defective DNA-repair that increases the risk of carcinomas especially oral squamous cell carcinoma. Employing high coverage, massive parallel Roche/454-next-generation-sequencing of 16S rRNA gene amplicons we analysed the oral microbiome of this FA patient in comparison to that of an FA patient with a benign leukoplakia and five healthy individuals. The microbiota of the FA patient with leukoplakia correlated well with that of the healthy controls. A dominance of Streptococcus, Veillonella and Neisseria species was typically observed. In contrast, the microbiome of the cancer bearing FA patient was dominated by Pseudomonas aeruginosa at the healthy sites, which changed to a predominance of 98% M. salivarium on the tumour surface. Quantification of the mycoplasma load in five healthy, two tumour- and two leukoplakia-FA patients by TaqMan-PCR confirmed the prevalence of M. salivarium at the tumour sites. These new findings suggest that this mycoplasma species with its reduced coding capacity found ideal breeding grounds at the tumour sites. Interestingly, the oral cavity of all FA patients and especially samples at the tumour sites were in addition positive for Candida albicans. It remains to be elucidated in further studies whether M. salivarium can be used as a predictive biomarker for tumour development in these patients
- …