666 research outputs found
Phase diagram of softly repulsive systems: The Gaussian and inverse-power-law potentials
We redraw, using state-of-the-art methods for free-energy calculations, the
phase diagrams of two reference models for the liquid state: the Gaussian and
inverse-power-law repulsive potentials. Notwithstanding the different behavior
of the two potentials for vanishing interparticle distances, their
thermodynamic properties are similar in a range of densities and temperatures,
being ruled by the competition between the body-centered-cubic (BCC) and
face-centered-cubic (FCC) crystalline structures and the fluid phase. We
confirm the existence of a reentrant BCC phase in the phase diagram of the
Gaussian-core model, just above the triple point. We also trace the BCC-FCC
coexistence line of the inverse-power-law model as a function of the power
exponent and relate the common features in the phase diagrams of such
systems to the softness degree of the interaction.Comment: 22 pages, 8 figure
Properties of cage rearrangements observed near the colloidal glass transition
We use confocal microscopy to study the motions of particles in concentrated
colloidal systems. Near the glass transition, diffusive motion is inhibited, as
particles spend time trapped in transient ``cages'' formed by neighboring
particles. We measure the cage sizes and lifetimes, which respectively shrink
and grow as the glass transition approaches. Cage rearrangements are more
prevalent in regions with lower local concentrations and higher disorder.
Neighboring rearranging particles typically move in parallel directions,
although a nontrivial fraction move in anti-parallel directions, usually from
pairs of particles with initial separations corresponding to the local maxima
and minima of the pair correlation function , respectively.Comment: 5 pages, 4 figures; text & figures revised in v
Dynamics of hard-sphere suspension using Dynamic Light Scattering and X-Ray Photon Correlation Spectroscopy: dynamics and scaling of the Intermediate Scattering Function
Intermediate Scattering Functions (ISF's) are measured for colloidal hard
sphere systems using both Dynamic Light Scattering (DLS) and X-ray Photon
Correlation Spectroscopy (XPCS). We compare the techniques, and discuss the
advantages and disadvantages of each. Both techniques agree in the overlapping
range of scattering vectors. We investigate the scaling behaviour found by
Segre and Pusey [1] but challenged by Lurio et al. [2]. We observe a scaling
behaviour over several decades in time but not in the long time regime.
Moreover, we do not observe long time diffusive regimes at scattering vectors
away from the peak of the structure factor and so question the existence of a
long time diffusion coefficients at these scattering vectors.Comment: 21 pages, 11 figure
Mixtures of Charged Colloid and Neutral Polymer: Influence of Electrostatic Interactions on Demixing and Interfacial Tension
The equilibrium phase behavior of a binary mixture of charged colloids and
neutral, non-adsorbing polymers is studied within free-volume theory. A model
mixture of charged hard-sphere macroions and ideal, coarse-grained,
effective-sphere polymers is mapped first onto a binary hard-sphere mixture
with non-additive diameters and then onto an effective Asakura-Oosawa model [S.
Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is
defined by a single dimensionless parameter -- the ratio of the polymer
diameter to the effective colloid diameter. For high salt-to-counterion
concentration ratios, a free-volume approximation for the free energy is used
to compute the fluid phase diagram, which describes demixing into colloid-rich
(liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic
interactions shifts the demixing binodal toward higher polymer concentration,
stabilizing the mixture. The enhanced stability is attributed to a weakening of
polymer depletion-induced attraction between electrostatically repelling
macroions. Comparison with predictions of density-functional theory reveals a
corresponding increase in the liquid-vapor interfacial tension. The predicted
trends in phase stability are consistent with observed behavior of
protein-polysaccharide mixtures in food colloids.Comment: 16 pages, 5 figure
Understanding the dynamics of biological colloids to elucidate cataract formation towards the development of methodology for its early diagnosis
The eye lens is the most characteristic example of mammalian tissues
exhibiting complex colloidal behaviour. In this paper we briefly describe how
dynamics in colloidal suspensions can help addressing selected aspects of lens
cataract which is ultimately related to the protein self-assembly under
pathological conditions. Results from dynamic light scattering of eye lens
homogenates over a wide protein concentration were analyzed and the various
relaxation modes were identified in terms of collective and self-diffusion
processes. Using this information as an input, the complex relaxation pattern
of the intact lens nucleus was rationalized. The model of cold cataract - a
phase separation effect of the lens cytoplasm with cooling - was used to
simulate lens cataract at in vitro conditions in an effort to determine the
parameters of the correlation functions that can be used as reliable indicators
of the cataract onset. The applicability of dynamic light scattering as a
non-invasive, early-diagnostic tool for ocular diseases is also demonstrated in
the light of the findings of the present paper.Comment: Slightly different version from the published one 10 pages, 2 figure
Self-diffusion coefficients of charged particles: Prediction of Nonlinear volume fraction dependence
We report on calculations of the translational and rotational short-time
self-diffusion coefficients and for suspensions of
charge-stabilized colloidal spheres. These diffusion coefficients are affected
by electrostatic forces and many-body hydrodynamic interactions (HI). Our
computations account for both two-body and three-body HI. For strongly charged
particles, we predict interesting nonlinear scaling relations and depending on volume fraction
, with essentially charge-independent parameters and . These
scaling relations are strikingly different from the corresponding results for
hard spheres. Our numerical results can be explained using a model of effective
hard spheres. Moreover, we perceptibly improve the known result for of
hard sphere suspensions.Comment: 8 pages, LaTeX, 3 Postscript figures included using eps
Stacking Entropy of Hard Sphere Crystals
Classical hard spheres crystallize at equilibrium at high enough density.
Crystals made up of stackings of 2-dimensional hexagonal close-packed layers
(e.g. fcc, hcp, etc.) differ in entropy by only about per sphere
(all configurations are degenerate in energy). To readily resolve and study
these small entropy differences, we have implemented two different
multicanonical Monte Carlo algorithms that allow direct equilibration between
crystals with different stacking sequences. Recent work had demonstrated that
the fcc stacking has higher entropy than the hcp stacking. We have studied
other stackings to demonstrate that the fcc stacking does indeed have the
highest entropy of ALL possible stackings. The entropic interactions we could
detect involve three, four and (although with less statistical certainty) five
consecutive layers of spheres. These interlayer entropic interactions fall off
in strength with increasing distance, as expected; this fall-off appears to be
much slower near the melting density than at the maximum (close-packing)
density. At maximum density the entropy difference between fcc and hcp
stackings is per sphere, which is roughly 30% higher
than the same quantity measured near the melting transition.Comment: 15 page
Phase Separation in Charge-Stabilized Colloidal Suspensions: Influence of Nonlinear Screening
The phase behavior of charge-stabilized colloidal suspensions is modeled by a
combination of response theory for electrostatic interparticle interactions and
variational theory for free energies. Integrating out degrees of freedom of the
microions (counterions, salt ions), the macroion-microion mixture is mapped
onto a one-component system governed by effective macroion interactions. Linear
response of microions to the electrostatic potential of the macroions results
in a screened-Coulomb (Yukawa) effective pair potential and a one-body volume
energy, while nonlinear response modifies the effective interactions [A. R.
Denton, \PR E {\bf 70}, 031404 (2004)]. The volume energy and effective pair
potential are taken as input to a variational free energy, based on
thermodynamic perturbation theory. For both linear and first-order nonlinear
effective interactions, a coexistence analysis applied to aqueous suspensions
of highly charged macroions and monovalent microions yields bulk separation of
macroion-rich and macroion-poor phases below a critical salt concentration, in
qualitative agreement with predictions of related linearized theories [R. van
Roij, M. Dijkstra, and J.-P. Hansen, \PR E {\bf 59}, 2010 (1999); P. B. Warren,
\JCP {\bf 112}, 4683 (2000)]. It is concluded that nonlinear screening can
modify phase behavior but does not necessarily suppress bulk phase separation
of deionized suspensions.Comment: 14 pages of text + 9 figure
Tracking Rotational Diffusion of Colloidal Clusters
We describe a novel method of tracking the rotational motion of clusters of
colloidal particles. Our method utilizes rigid body transfor- mations to
determine the rotations of a cluster and extends conventional proven particle
tracking techniques in a simple way, thus facilitating the study of rotational
dynamics in systems containing or composed of colloidal clusters. We test our
method by measuring dynamical properties of simulated Brownian clusters under
conditions relevant to microscopy experiments. We then use the technique to
track and describe the motions of a real colloidal cluster imaged with confocal
microscopy.Comment: 14 pages, 6 figures. Submitted to Optics Expres
- …