29 research outputs found
A metadata approach for clinical data management in translational genomics studies in breast cancer.
BACKGROUND: In molecular profiling studies of cancer patients, experimental and clinical data are combined in order to understand the clinical heterogeneity of the disease: clinical information for each subject needs to be linked to tumour samples, macromolecules extracted, and experimental results. This may involve the integration of clinical data sets from several different sources: these data sets may employ different data definitions and some may be incomplete. METHODS: In this work we employ semantic web techniques developed within the CancerGrid project, in particular the use of metadata elements and logic-based inference to annotate heterogeneous clinical information, integrate and query it. RESULTS: We show how this integration can be achieved automatically, following the declaration of appropriate metadata elements for each clinical data set; we demonstrate the practicality of this approach through application to experimental results and clinical data from five hospitals in the UK and Canada, undertaken as part of the METABRIC project (Molecular Taxonomy of Breast Cancer International Consortium). CONCLUSION: We describe a metadata approach for managing similarities and differences in clinical datasets in a standardized way that uses Common Data Elements (CDEs). We apply and evaluate the approach by integrating the five different clinical datasets of METABRIC.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Constitutively Enhanced Lymphatic Pumping in the Upper Limbs of Women Who Later Develop Breast Cancer-Related Lymphedema.
BACKGROUND: It has previously been shown that the lymph drainage rate in both upper limbs is greater in women destined to develop breast cancer-related lymphedema (BCRL) than in those who do not develop BCRL, indicating a constitutive predisposition. We explored constitutive differences further by measuring the maximum lymphatic pump pressure (Ppump) and the rate of (99m)Tc-Nanocoll transport generated by the contractile upper limb lymphatics before and after breast cancer surgery in a group of women who were followed for 2 years to determine their eventual BCRL or non-BCRL status. METHODS AND RESULTS: Ppump and tracer transport rate were measured by lymphatic congestion lymphoscintigraphy in the ipsilateral upper limb in 26 women pre- and post-breast cancer surgery. BCRL occurred in 10/26 (38.5%) cases. Ppump in the women who later developed BCRL (40.0 ± 8.2 mmHg) was 1.7-fold higher than in those who did not develop BCRL (23.1 ± 10.8 mmHg, p = 0.001). Moreover, the rate of lymph tracer transport into the forearm was 2.2-fold greater in the women who later developed BCRL (p = 0.052). Surgery did not significantly reduce Ppump measured 21 weeks postsurgery, but impaired forearm tracer transport in pre-BCRL women by 58% (p = 0.047), although not in those who did not develop BCRL. CONCLUSIONS: Women destined to develop BCRL have higher pumping pressures and lymph transport, indicating harder-working lymphatics before cancer treatment. Axillary lymphatic damage from surgery appears to compromise lymph drainage in those women constitutively predisposed to higher lymphatic pressures and lymph transport
High lung cancer surgical procedure volume is associated with shorter length of stay and lower risks of re-admission and death: National cohort analysis in England.
It is debated whether treating cancer patients in high-volume surgical centres can lead to improvement in outcomes, such as shorter length of hospital stay, decreased frequency and severity of post-operative complications, decreased re-admission, and decreased mortality. The dataset for this analysis was based on cancer registration and hospital discharge data and comprised information on 15,738 non-small-cell lung cancer patients resident and diagnosed in England in 2006-2010 and treated by surgical resection. The number of lung cancer resections was computed for each hospital in each calendar year, and patients were assigned to a hospital volume quintile on the basis of the volume of their hospital. Hospitals with large lung cancer surgical resection volumes were less restrictive in their selection of patients for surgical management and provided a higher resection rate to their geographical population. Higher volume hospitals had shorter length of stay and the odds of re-admission were 15% lower in the highest hospital volume quintile compared with the lowest quintile. Mortality risks were 1% after 30 d and 3% after 90 d. Patients from hospitals in the highest volume quintile had about half the odds of death within 30 d than patients from the lowest quintile. Variations in outcomes were generally small, but in the same direction, with consistently better outcomes in the larger hospitals. This gives support to the ongoing trend towards centralisation of clinical services, but service re-organisation needs to take account of not only the size of hospitals but also referral routes and patient access
A tumor DNA complex aberration index is an independent predictor of survival in breast and ovarian cancer
Complex focal chromosomal rearrangements in cancer genomes, also called "firestorms", can be scored from DNA copy number data. The complex arm-wise aberration index (CAAI) is a score that captures DNA copy number alterations that appear as focal complex events in tumors, and has potential prognostic value in breast cancer. This study aimed to validate this DNA-based prognostic index in breast cancer and test for the first time its potential prognostic value in ovarian cancer. Copy number alteration (CNA) data from 1950 breast carcinomas (METABRIC cohort) and 508 high-grade serous ovarian carcinomas (TCGA dataset) were analyzed. Cases were classified as CAAI positive if at least one complex focal event was scored. Complex alterations were frequently localized on chromosome 8p (n = 159), 17q (n = 176) and 11q (n = 251). CAAI events on 11q were most frequent in estrogen receptor positive (ER+) cases and on 17q in estrogen receptor negative (ER) cases. We found only a modest correlation between CAAI and the overall rate of genomic instability (GII) and number of breakpoints (r = 0.27 and r = 0.42, p <0.001). Breast cancer specific survival (BCSS), overall survival (OS) and ovarian cancer progression free survival (PUS) were used as clinical end points in Cox proportional hazard model survival analyses. CAAI positive breast cancers (43%) had higher mortality: hazard ratio (HR) of 1.94 (95%CI, 1.62-2.32) for BCSS, and of 1.49 (95%CI, 1.30-1.71) for OS. Representations of the 70-gene and the 21-gene predictors were compared with CAAI in multivariable models and CAAI was independently significant with a Cox adjusted HR of 1.56 (95%CI, 1.23-1.99) for ER+ and 1.55 (95%CI, 1.11-2.18) for ER disease. None of the expression-based predictors were prognostic in the ER subset. We found that a model including CAM and the two expression-based prognostic signatures outperformed a model including the 21-gene and 70-gene signatures but excluding CAAL Inclusion of CAAI in the clinical prognostication tool PREDICT significantly improved its performance. CAAI positive ovarian cancers (52%) also had worse prognosis: HRs of 1.3 (95%CI, 1.1-1.7) for PFS and 1.3 (95%CI, 1.1-1.6) for OS. This study validates CAM as an independent predictor of survival in both ER+ and ER breast cancer and reveals a significant prognostic value for CAAI in high-grade serous ovarian cancer. (C) 2014 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).Publisher PDFPeer reviewe
The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes
The genomic landscape of breast cancer is complex, and inter- and intra-tumour heterogeneity are important challenges in treating the disease. In this study, we sequence 173 genes in 2,433 primary breast tumours that have copy number aberration (CNA), gene expression and long-term clinical follow-up data. We identify 40 mutation-driver (Mut-driver) genes, and determine associations between mutations, driver CNA profiles, clinical-pathological parameters and survival. We assess the clonal states of Mut-driver mutations, and estimate levels of intra-tumour heterogeneity using mutant-allele fractions. Associations between PIK3CA mutations and reduced survival are identified in three subgroups of ER-positive cancer (defined by amplification of 17q23, 11q13-14 or 8q24). High levels of intra-tumour heterogeneity are in general associated with a worse outcome, but highly aggressive tumours with 11q13-14 amplification have low levels of intra-tumour heterogeneity. These results emphasize the importance of genome-based stratification of breast cancer, and have important implications for designing therapeutic strategies.The METABRIC project was funded by Cancer Research UK, the British Columbia Cancer Foundation and Canadian Breast Cancer Foundation BC/Yukon. This sequencing project was funded by CRUK grant C507/A16278 and Illumina UK performed all the sequencing. The authors also acknowledge the support of the University of Cambridge, Hutchinson Whampoa, the NIHR Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer Medicine Centre, the Centre for Translational Genomics (CTAG) Vancouver and the BCCA Breast Cancer Outcomes Unit. We thank the Genomics, Histopathology, and Biorepository Core Facilities at the Cancer Research UK Cambridge Institute, and the Addenbrooke’s Human Research Tissue Bank (supported by the National Institute for Health Research Cambridge Biomedical Research Centre).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1147
Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups.
The rates and routes of lethal systemic spread in breast cancer are poorly understood owing to a lack of molecularly characterized patient cohorts with long-term, detailed follow-up data. Long-term follow-up is especially important for those with oestrogen-receptor (ER)-positive breast cancers, which can recur up to two decades after initial diagnosis1-6. It is therefore essential to identify patients who have a high risk of late relapse7-9. Here we present a statistical framework that models distinct disease stages (locoregional recurrence, distant recurrence, breast-cancer-related death and death from other causes) and competing risks of mortality from breast cancer, while yielding individual risk-of-recurrence predictions. We apply this model to 3,240 patients with breast cancer, including 1,980 for whom molecular data are available, and delineate spatiotemporal patterns of relapse across different categories of molecular information (namely immunohistochemical subtypes; PAM50 subtypes, which are based on gene-expression patterns10,11; and integrative or IntClust subtypes, which are based on patterns of genomic copy-number alterations and gene expression12,13). We identify four late-recurring integrative subtypes, comprising about one quarter (26%) of tumours that are both positive for ER and negative for human epidermal growth factor receptor 2, each with characteristic tumour-driving alterations in genomic copy number and a high risk of recurrence (mean 47-62%) up to 20 years after diagnosis. We also define a subgroup of triple-negative breast cancers in which cancer rarely recurs after five years, and a separate subgroup in which patients remain at risk. Use of the integrative subtypes improves the prediction of late, distant relapse beyond what is possible with clinical covariates (nodal status, tumour size, tumour grade and immunohistochemical subtype). These findings highlight opportunities for improved patient stratification and biomarker-driven clinical trials.Cancer Research UK (CRUK) travel grant (SWAH/047)
282 to visit Prof. Curtis’ Lab. C.R. is supported by award MTM2015-71217-R. Ca.C. is
283 supported by CRUK, ECMC and NIHR. C.C. is supported by the National Institutes
284 of Health through the NIH Director’s Pioneer Award (DP1-CA238296) and the Breast
285 Cancer Research Foundation
The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.
The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy number aberrations (CNAs) were associated with expression in ~40% of genes, with the landscape dominated by cis- and trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA–RNA profiles revealed novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort. These include a high-risk, oestrogen-receptor-positive 11q13/14 cis-acting subgroup and a favourable prognosis subgroup devoid of CNAs. Trans-acting aberration hotspots were found to modulate subgroup-specific gene networks, including a TCR deletion-mediated adaptive immune response in the ‘CNA-devoid’ subgroup and a basal-specific chromosome 5 deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer population, derived from the impact of somatic CNAs on the transcriptome
A tumor DNA complex aberration index is an independent predictor of survival in breast and ovarian cancer.
Complex focal chromosomal rearrangements in cancer genomes, also called "firestorms", can be scored from DNA copy number data. The complex arm-wise aberration index (CAAI) is a score that captures DNA copy number alterations that appear as focal complex events in tumors, and has potential prognostic value in breast cancer. This study aimed to validate this DNA-based prognostic index in breast cancer and test for the first time its potential prognostic value in ovarian cancer. Copy number alteration (CNA) data from 1950 breast carcinomas (METABRIC cohort) and 508 high-grade serous ovarian carcinomas (TCGA dataset) were analyzed. Cases were classified as CAAI positive if at least one complex focal event was scored. Complex alterations were frequently localized on chromosome 8p (n = 159), 17q (n = 176) and 11q (n = 251). CAAI events on 11q were most frequent in estrogen receptor positive (ER+) cases and on 17q in estrogen receptor negative (ER-) cases. We found only a modest correlation between CAAI and the overall rate of genomic instability (GII) and number of breakpoints (r = 0.27 and r = 0.42, p < 0.001). Breast cancer specific survival (BCSS), overall survival (OS) and ovarian cancer progression free survival (PFS) were used as clinical end points in Cox proportional hazard model survival analyses. CAAI positive breast cancers (43%) had higher mortality: hazard ratio (HR) of 1.94 (95%CI, 1.62-2.32) for BCSS, and of 1.49 (95%CI, 1.30-1.71) for OS. Representations of the 70-gene and the 21-gene predictors were compared with CAAI in multivariable models and CAAI was independently significant with a Cox adjusted HR of 1.56 (95%CI, 1.23-1.99) for ER+ and 1.55 (95%CI, 1.11-2.18) for ER- disease. None of the expression-based predictors were prognostic in the ER- subset. We found that a model including CAAI and the two expression-based prognostic signatures outperformed a model including the 21-gene and 70-gene signatures but excluding CAAI. Inclusion of CAAI in the clinical prognostication tool PREDICT significantly improved its performance. CAAI positive ovarian cancers (52%) also had worse prognosis: HRs of 1.3 (95%CI, 1.1-1.7) for PFS and 1.3 (95%CI, 1.1-1.6) for OS. This study validates CAAI as an independent predictor of survival in both ER+ and ER- breast cancer and reveals a significant prognostic value for CAAI in high-grade serous ovarian cancer