8 research outputs found

    Hedgehog Signalling in Androgen Independent Prostate Cancer

    Get PDF
    Objectives: Androgen-deprivation therapy effectively shrinks hormone-naïve prostate cancer, both in the prostate and at sites of distant metastasis. However prolonged androgen deprivation generally results in relapse and androgen-independent tumour growth, which is inevitably fatal. The molecular events that enable prostate cancer cells to proliferate in reduced androgen conditions are poorly understood. Here we investigate the role of Hedgehog signalling in androgen-independent prostate cancer (AIPC). Methods: Activity of the Hedgehog signalling pathway was analysed in cultured prostate cancer cells, and circulating prostate tumour cells were isolated from blood samples of patients with AIPC. Results: AIPC cells were derived through prolonged culture in reduced androgen conditions, modelling hormone therapy in patients, and expressed increased levels of Hedgehog signalling proteins. Exposure of cultured AIPC cells to cyclopamine, which inhibits Hedgehog signalling, resulted in inhibition of cancer cell growth. The expression of the Hedgehog receptor PTCH and the highly prostate cancer-specific gene DD3PCA3 was significantly higher in circulating prostate cancer cells isolated from patients with AIPC compared with samples prepared from normal individuals. There was an association between PTCH and DD3PCA3 expression and the length of androgen-ablation therapy. Conclusions: Our data are consistent with reports implicating overactivity of Hedgehog signalling in prostate cancer and suggest that Hedgehog signalling contributes to the androgen-independent growth of prostate cancer cells. As systemic anti-Hedgehog medicines are developed, the Hedgehog pathway will become a potential new therapeutic target in advanced prostate cancer.Peer reviewedFinal Accepted Versio

    Binding of Integrin α6β4 to Plectin Prevents Plectin Association with F-Actin but Does Not Interfere with Intermediate Filament Binding

    Get PDF
    Hemidesmosomes are stable adhesion complexes in basal epithelial cells that provide a link between the intermediate filament network and the extracellular matrix. We have investigated the recruitment of plectin into hemidesmosomes by the α6β4 integrin and have shown that the cytoplasmic domain of the β4 subunit associates with an NH2-terminal fragment of plectin that contains the actin-binding domain (ABD). When expressed in immortalized plectin-deficient keratinocytes from human patients with epidermol- ysis bullosa (EB) simplex with muscular dystrophy (MD-EBS), this fragment is colocalized with α6β4 in basal hemidesmosome-like clusters or associated with F-actin in stress fibers or focal contacts. We used a yeast two-hybrid binding assay in combination with an in vitro dot blot overlay assay to demonstrate that β4 interacts directly with plectin, and identified a major plectin-binding site on the second fibronectin type III repeat of the β4 cytoplasmic domain. Mapping of the β4 and actin-binding sites on plectin showed that the binding sites overlap and are both located in the plectin ABD. Using an in vitro competition assay, we could show that β4 can compete out the plectin ABD fragment from its association with F-actin. The ability of β4 to prevent binding of F-actin to plectin explains why F-actin has never been found in association with hemidesmosomes, and provides a molecular mechanism for a switch in plectin localization from actin filaments to basal intermediate filament–anchoring hemidesmosomes when β4 is expressed. Finally, by mapping of the COOH-terminally located binding site for several different intermediate filament proteins on plectin using yeast two-hybrid assays and cell transfection experiments with MD-EBS keratinocytes, we confirm that plectin interacts with different cytoskeletal networks

    An interdisciplinary team communication framework and its application to healthcare 'e-teams' systems design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are few studies that examine the processes that interdisciplinary teams engage in and how we can design health information systems (HIS) to support those team processes. This was an exploratory study with two purposes: (1) To develop a framework for interdisciplinary team communication based on structures, processes and outcomes that were identified as having occurred during weekly team meetings. (2) To use the framework to guide 'e-teams' HIS design to support interdisciplinary team meeting communication.</p> <p>Methods</p> <p>An ethnographic approach was used to collect data on two interdisciplinary teams. Qualitative content analysis was used to analyze the data according to structures, processes and outcomes.</p> <p>Results</p> <p>We present details for team meta-concepts of structures, processes and outcomes and the concepts and sub concepts within each meta-concept. We also provide an exploratory framework for interdisciplinary team communication and describe how the framework can guide HIS design to support 'e-teams'.</p> <p>Conclusion</p> <p>The structures, processes and outcomes that describe interdisciplinary teams are complex and often occur in a non-linear fashion. Electronic data support, process facilitation and team video conferencing are three HIS tools that can enhance team function.</p
    corecore