4,255 research outputs found

    The multifragmentation of spectator matter

    Full text link
    We present the first microscopic calculation of the spectator fragmentation observed in heavy ion reactions at relativistic energies which reproduces the slope of the kinetic energy spectra of the fragments as well as their multiplicity, both measured by the ALADIN collaboration. In the past both have been explained in thermal models, however with vastly different assumptions about the excitation energy and the density of the system. We show that both observables are dominated by dynamical processes and that the system does not pass a state of thermal equilibrium. These findings question the recent conjecture that in these collisions a phase transition of first order, similar to that between water and vapor, can be observed.Comment: 7 page

    Domain Growth in Random Magnets

    Get PDF
    We study the kinetics of domain growth in ferromagnets with random exchange interactions. We present detailed Monte Carlo results for the nonconserved random-bond Ising model, which are consistent with power-law growth with a variable exponent. These results are interpreted in the context of disorder barriers with a logarithmic dependence on the domain size. Further, we clarify the implications of logarithmic barriers for both nonconserved and conserved domain growth.Comment: 7 pages, 4 figure

    Nakajima-Zwanzig versus time-convolutionless master equation for the non-Markovian dynamics of a two-level system

    Full text link
    We consider the exact reduced dynamics of a two-level system coupled to a bosonic reservoir, further obtaining the exact time-convolutionless and Nakajima-Zwanzig non-Markovian equations of motion. The considered system includes the damped and undamped Jaynes-Cummings model. The result is obtained by exploiting an expression of quantum maps in terms of matrices and a simple relation between the time evolution map and time-convolutionless generator as well as Nakajima-Zwanzig memory kernel. This non-perturbative treatment shows that each operator contribution in Lindblad form appearing in the exact time-convolutionless master equation is multiplied by a different time dependent function. Similarly, in the Nakajima-Zwanzig master equation each such contribution is convoluted with a different memory kernel. It appears that depending on the state of the environment the operator structures of the two set of equations of motion can exhibit important differences.Comment: 12 pages, no figure

    Amplification of Fluctuations in Unstable Systems with Disorder

    Full text link
    We study the early-stage kinetics of thermodynamically unstable systems with quenched disorder. We show analytically that the growth of initial fluctuations is amplified by the presence of disorder. This is confirmed by numerical simulations of morphological phase separation (MPS) in thin liquid films and spinodal decomposition (SD) in binary mixtures. We also discuss the experimental implications of our results.Comment: 15 pages, 4 figure

    Controlling Entanglement Generation in External Quantum Fields

    Full text link
    Two, non-interacting two-level atoms immersed in a common bath can become mutually entangled when evolving with a Markovian, completely positive dynamics. For an environment made of external quantum fields, this phenomenon can be studied in detail: one finds that entanglement production can be controlled by varying the bath temperature and the distance between the atoms. Remarkably, in certain circumstances, the quantum correlations can persist in the asymptotic long-time regime.Comment: 12 pages, to appear in J. Opt. B: Quantum Semiclass. Op

    Controlling entanglement by direct quantum feedback

    Full text link
    We discuss the generation of entanglement between electronic states of two atoms in a cavity using direct quantum feedback schemes. We compare the effects of different control Hamiltonians and detection processes in the performance of entanglement production and show that the quantum-jump-based feedback proposed by us in Phys. Rev. A {\bf 76} 010301(R) (2007) can protect highly entangled states against decoherence. We provide analytical results that explain the robustness of jump feedback, and also analyse the perspectives of experimental implementation by scrutinising the effects of imperfections and approximations in our model.Comment: 10 pages, 8 figures. To appear in PR

    Driving-dependent damping of Rabi oscillations in two-level semiconductor systems

    Full text link
    We propose a mechanism to explain the nature of the damping of Rabi oscillations with increasing driving-pulse area in localized semiconductor systems, and have suggested a general approach which describes a coherently driven two-level system interacting with a dephasing reservoir. Present calculations show that the non-Markovian character of the reservoir leads to the dependence of the dephasing rate on the driving-field intensity, as observed experimentally. Moreover, we have shown that the damping of Rabi oscillations might occur as a result of different dephasing mechanisms for both stationary and non-stationary effects due to coupling to the environment. Present calculated results are found in quite good agreement with available experimental measurements

    Relaxation to equilibrium driven via indirect control in Markovian dynamics

    Full text link
    We characterize to what extent it is possible to modify the stationary states of a quantum dynamical semigroup, that describes the irreversible evolution of a two-level system, by means of an auxiliary two-level system. We consider systems that can be initially entangled or uncorrelated. We find that the indirect control of the stationary states is possible, even if there are not initial correlations, under suitable conditions on the dynamical parameters characterizing the evolution of the joint system.Comment: revtex4, 7 page
    • …
    corecore