5,698 research outputs found

    Mass-Transport Models with Fragmentation and Aggregation

    Get PDF
    We present a review of nonequilibrium phase transitions in mass-transport models with kinetic processes like fragmentation, diffusion, aggregation, etc. These models have been used extensively to study a wide range of physical problems. We provide a detailed discussion of the analytical and numerical techniques used to study mass-transport phenomena.Comment: 29 pages, 4 figure

    Crossover in Growth Law and Violation of Superuniversality in the Random Field Ising Model

    Full text link
    We study the nonconserved phase ordering dynamics of the d = 2, 3 random field Ising model, quenched to below the critical temperature. Motivated by the puzzling results of previous work in two and three di- mensions, reporting a crossover from power-law to logarithmic growth, together with superuniversal behavior of the correlation function, we have undertaken a careful investigation of both the domain growth law and the autocorrelation function. Our main results are as follows: We confirm the crossover to asymptotic logarithmic behavior in the growth law, but, at variance with previous findings, the exponent in the preasymptotic power law is disorder-dependent, rather than being the one of the pure system. Furthermore, we find that the autocorre- lation function does not display superuniversal behavior. This restores consistency with previous results for the d = 1 system, and fits nicely into the unifying scaling scheme we have recently proposed in the study of the random bond Ising model.Comment: To be published in Physical Review

    The multifragmentation of spectator matter

    Full text link
    We present the first microscopic calculation of the spectator fragmentation observed in heavy ion reactions at relativistic energies which reproduces the slope of the kinetic energy spectra of the fragments as well as their multiplicity, both measured by the ALADIN collaboration. In the past both have been explained in thermal models, however with vastly different assumptions about the excitation energy and the density of the system. We show that both observables are dominated by dynamical processes and that the system does not pass a state of thermal equilibrium. These findings question the recent conjecture that in these collisions a phase transition of first order, similar to that between water and vapor, can be observed.Comment: 7 page

    Domain Growth in Random Magnets

    Get PDF
    We study the kinetics of domain growth in ferromagnets with random exchange interactions. We present detailed Monte Carlo results for the nonconserved random-bond Ising model, which are consistent with power-law growth with a variable exponent. These results are interpreted in the context of disorder barriers with a logarithmic dependence on the domain size. Further, we clarify the implications of logarithmic barriers for both nonconserved and conserved domain growth.Comment: 7 pages, 4 figure

    Amplification of Fluctuations in Unstable Systems with Disorder

    Full text link
    We study the early-stage kinetics of thermodynamically unstable systems with quenched disorder. We show analytically that the growth of initial fluctuations is amplified by the presence of disorder. This is confirmed by numerical simulations of morphological phase separation (MPS) in thin liquid films and spinodal decomposition (SD) in binary mixtures. We also discuss the experimental implications of our results.Comment: 15 pages, 4 figure
    • …
    corecore