3,306 research outputs found
Study of non-equilibrium effects and thermal properties of heavy ion collisions using a covariant approach
Non-equilibrium effects are studied using a full Lorentz-invariant formalism.
Our analysis shows that in reactions considered here, no global or local
equilibrium is reached. The heavier masses are found to be equilibrated more
than the lighter systems. The local temperature is extracted using hot Thomas
Fermi formalism generalized for the case of two interpenetrating pieces of
nuclear matter. The temperature is found to vary linearly with bombarding
energy and impact parameter whereas it is nearly independent of the mass of the
colliding nuclei. This indicates that the study of temperature with medium size
nuclei is also reliable. The maximum temperatures obtained in our approach are
in a nice agreement with earlier calculations of other approaches. A simple
parametrization of maximal temperature as a function of the bombarding energy
is also given.Comment: LaTex-file, 17 pages, 8 figures (available upon request), Journal of
Physics G20 (1994) 181
Analytical parametrization of fusion barriers using proximity potentials
Using the three versions of proximity potentials, namely proximity 1977,
proximity 1988, and proximity 2000, we present a pocket formula for fusion
barrier heights and positions. This was achieved by analyzing as many as 400
reactions with mass between 15 and 296. Our parametrized formula can reproduced
the exact barrier heights and positions within an accuracy of . A
comparison with the experimental data is also in good agreement.Comment: 12 pages, 5 figure
Amplification of Fluctuations in Unstable Systems with Disorder
We study the early-stage kinetics of thermodynamically unstable systems with
quenched disorder. We show analytically that the growth of initial fluctuations
is amplified by the presence of disorder. This is confirmed by numerical
simulations of morphological phase separation (MPS) in thin liquid films and
spinodal decomposition (SD) in binary mixtures. We also discuss the
experimental implications of our results.Comment: 15 pages, 4 figure
Resonance fluorescence from an artificial atom in squeezed vacuum
We present an experimental realization of resonance fluorescence in squeezed
vacuum. We strongly couple microwave-frequency squeezed light to a
superconducting artificial atom and detect the resulting fluorescence with high
resolution enabled by a broadband traveling-wave parametric amplifier. We
investigate the fluorescence spectra in the weak and strong driving regimes,
observing up to 3.1 dB of reduction of the fluorescence linewidth below the
ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum
on the relative phase of the driving and squeezed vacuum fields. Our results
are in excellent agreement with predictions for spectra produced by a two-level
atom in squeezed vacuum [Phys. Rev. Lett. \textbf{58}, 2539-2542 (1987)],
demonstrating that resonance fluorescence offers a resource-efficient means to
characterize squeezing in cryogenic environments
Modelling the many-body dynamics of heavy ion collisions: Present status and future perspective
Basic problems of the semiclassical microscopic modelling of strongly
interactingsystems are discussed within the framework of Quantum Molecular
Dynamics (QMD). This model allows to study the influence of several types of
nucleonic interactions on a large variety of observables and phenomena
occurring in heavy ion collisions at relativistic energies.It is shown that the
same predictions can be obtained with several -- numerically completely
different and independently written -- programs as far as the same model
parameters are employed and the same basic approximations are made. Many
observables are robust against variations of the details of the model
assumptions used. Some of the physical results, however, depend also on rather
technical parameters like the preparation of the initial configuration in phase
space. This crucial problem is connected with the description of the ground
state of single nuclei,which differs among the various approaches. An outlook
to an improved molecular dynamics scheme for heavy ion collisions is given.Comment: 39 pages, 12 figure
Effect of Phosphate Group Addition on the Properties of Denture Base Resins
Statement of problem
Acrylic resins are prone to microbial adherence, especially by Candida albicans. Surface-charged resins alter the ionic interaction between the denture resin and Candida hyphae, and these resins are being developed as a means to reduce microbial colonization on the denture surface. Purpose
The purpose of this study was to investigate the physical and mechanical properties of phosphate-containing polymethyl methacrylate resins for their suitability as a denture material. Material and methods
Using PMMA with cross-linker (Lucitone 199) as a control, 4 experimental groups containing various levels of phosphate with and without cross-linker were generated. The properties examined were impact strength, fracture toughness, wettability (contact angle), and resin bonding ability to denture teeth. Impact strength was tested in the Izod configuration (n=16), and fracture toughness (n=13) was measured using the single-edge notched bend test. Wettability was determined by calculating the contact angle of water on the material surface (n=12), while ISO 1567 was used for bonding ability (n=12). The data were analyzed by 1- and 2-way ANOVA (α=.05). Results
A trend of increased hydrophilicity, as indicated by lower contact angle, was observed with increased concentrations of phosphate. With regard to the other properties, no significant differences were found when compared with the control acrylic resin. Conclusions
No adverse physical effect due to the addition of a phosphate-containing monomer was found in the acrylic denture resins. Additional mechanical and physical properties, biocompatibility, and clinical efficacy studies are needed to confirm the in vivo anti-Candida activity of these novel resins
Recommended from our members
A model-based assessment of the effects of projected climate change on the water resources of Jordan
This paper is concerned with the quantification of the likely effect of anthropogenic climate change on the water resources of Jordan by the end of the twenty-first century. Specifically, a suite of hydrological models are used in conjunction with modelled outcomes from a regional climate model, HadRM3, and a weather generator to determine how future flows in the upper River Jordan and in the Wadi Faynan may change. The results indicate that groundwater will play an important role in the water security of the country as irrigation demands increase. Given future projections of reduced winter rainfall and increased near-surface air temperatures, the already low groundwater recharge will decrease further. Interestingly, the modelled discharge at the Wadi Faynan indicates that extreme flood flows will increase in magnitude, despite a decrease in the mean annual rainfall. Simulations projected no increase in flood magnitude in the upper River Jordan. Discussion focuses on the utility of the modelling framework, the problems of making quantitative forecasts and the implications of reduced water availability in Jordan
Perturbative Linearization of Reaction-Diffusion Equations
We develop perturbative expansions to obtain solutions for the initial-value
problems of two important reaction-diffusion systems, viz., the Fisher equation
and the time-dependent Ginzburg-Landau (TDGL) equation. The starting point of
our expansion is the corresponding singular-perturbation solution. This
approach transforms the solution of nonlinear reaction-diffusion equations into
the solution of a hierarchy of linear equations. Our numerical results
demonstrate that this hierarchy rapidly converges to the exact solution.Comment: 13 pages, 4 figures, latex2
- âŠ