116 research outputs found

    Late-Season Nitrogen Applications Increase Soybean Yield and Seed Protein Concentration

    Get PDF
    Low seed and meal protein concentration in modern high-yielding soybean [Glycine max L. (Merr.)] cultivars is a major concern but there is limited information on effective cultural practices to address this issue. In the objective of dealing with this problem, this study conducted field experiments in 2019 and 2020 to evaluate the response of seed and meal protein concentrations to the interactive effects of late-season inputs [control, a liquid Bradyrhizobium japonicum inoculation at R3, and 202 kg ha−1 nitrogen (N) fertilizer applied after R5], previous cover crop (fallow or cereal cover crop with residue removed), and short- and full-season maturity group cultivars at three U.S. locations (Fayetteville, Arkansas; Lexington, Kentucky; and St. Paul, Minnesota). The results showed that cover crops had a negative effect on yield in two out of six site-years and decreased seed protein concentration by 8.2 mg g−1 on average in Minnesota. Inoculant applications at R3 did not affect seed protein concentration or yield. The applications of N fertilizer after R5 increased seed protein concentration by 6 to 15 mg g−1, and increased yield in Arkansas by 13% and in Minnesota by 11% relative to the unfertilized control. This study showed that late-season N applications can be an effective cultural practice to increase soybean meal protein concentration in modern high-yielding cultivars above the minimum threshold required by the industry. New research is necessary to investigate sustainable management practices that increase N availability to soybeans late in the season

    Stellar populations across the NGC4244 truncated galactic disk

    Get PDF
    We use HST/ACS to study the resolved stellar populations of the nearby, nearly edge-on galaxy NGC4244 across its outer disk surface density break. The stellar photometry allows us to study the distribution of different stellar populations and reach very low equivalent surface brightnesses. We find that the break occurs at the same radius for young, intermediate age, and old stars. The stellar density beyond the break drops sharply by a factor of at least 600 in 5 kpc. The break occurs at the same radius independent of height above the disk, but is sharpest in the midplane and nearly disappears at large heights. These results make it unlikely that truncations are caused by a star formation threshold alone: the threshold would have to keep the same radial position from less than 100 Myr to 10 Gyr ago, in spite of potential disturbances such as infall and redistribution of gas by internal processes. A dynamical interpretation of truncation formation is more likely such as due to angular momentum redistribution by bars or density waves, or heating and stripping of stars caused by the bombardment of dark matter sub-halos. The latter explanation is also in quantitative agreement with the small diffuse component we see around the galaxy.Comment: ApJ Letters, in press. Five pages, 2 figure

    Soybean Management for Seed Composition: The Perspective of U.S. Farmers

    Get PDF
    The soybean [Glycine max (L.) Merr.] compositional quality is mainly provided by the seed concentration of protein and oil. These traits are critical for sustaining global use, and although there is demand for high protein soybean, no mechanism to differentiate production is in place. At the opposite end of the supply chain, farmers are remunerated on a mass basis without having any incentive regarding seed composition. This study evaluated farmers\u27 perspectives and knowledge on soybean quality and their propensity to adopt quality improvement technologies. Farmers from the main U.S. producing regions (n = 271) were investigated with a self-administrated survey containing 21 questions during 2020 and 2021. Our results show that 84% are unaware of the current protein and oil levels from their own production. A small portion (1.4%) make management decisions (e.g., choice of genotypes or monitor quality) based on the implications on seed quality. However, practices already in place are likely to enhance the quality of seed, namely N nutrition (via rhizobia [12.9%] or fertilizer [5.9%]) and late-season crop protection (17.1%). If farmers are financially rewarded by US$0.50 per bushel, a mindset change may occur. Based on these results, we concluded that shifts in the U.S. production system targeting protein or oil markets are possible, and the constraints are mainly related to on-farm management. However, the challenges for improving the U.S. soybean competitiveness in global or niche markets also rely upon other segments of the production chain, specifically breeders, technology suppliers, and logistical structure

    Soybean yield, biological N2 fixation and seed composition responses to additional inoculation in the United States

    Get PDF
    It is unclear if additional inoculation with Bradyrhizobia at varying soybean [Glycine max (L.) Merr.] growth stages can impact biological nitrogen fixation (BNF), increase yield and improve seed composition [protein, oil, and amino acid (AA) concentrations]. The objectives of this study were to evaluate the effect of different soybean inoculation strategies (seed coating and additional soil inoculation at V4 or R1) on: (i) seed yield, (ii) seed composition, and (iii) BNF traits [nodule number and relative abundance of ureides (RAU)]. Soybean field trials were conducted in 11 environments (four states of the US) to evaluate four treatments: (i) control without inoculation, (ii) seed inoculation, (iii) seed inoculation + soil inoculation at V4, and (iv) seed inoculation + soil inoculation at R1. Results demonstrated no effect of seed or additional soil inoculation at V4 or R1 on either soybean seed yield or composition. Also, inoculation strategies produced similar values to the non-inoculated control in terms of nodule number and RAU, a reflection of BNF. Therefore, we conclude that in soils with previous history of soybean and under non-severe stress conditions (e.g. high early-season temperature and/or saturated soils), there is no benefit to implementing additional inoculation on soybean yield and seed composition.Fil: Carciochi, Walter Daniel. Kansas State University; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mar del Plata; ArgentinaFil: Moro Rosso, Luiz H.. Kansas State University; Estados UnidosFil: Secchi, Mario Alberto. Kansas State University; Estados UnidosFil: Torres, Adalgisa R.. Kansas State University; Estados UnidosFil: Naeve, Seth. University of Minnesota; Estados UnidosFil: Casteel, Shaun N.. Purdue University; Estados UnidosFil: KovĂĄcs, PĂ©ter. University of South Dakota; Estados UnidosFil: Davidson, Dan. Illinois Soybean Association; Estados UnidosFil: Purcell, Larry C.. University of Arkansas for Medical Sciences; Estados UnidosFil: Archontoulis, Sotirios. University of Iowa; Estados UnidosFil: Ciampitti, Ignacio A.. Kansas State University; Estados Unido

    Old Massive Globular Clusters and the Stellar Halo of the Dwarf Starburst Galaxy NGC 4449

    Full text link
    We use Hubble Space Telescope imaging to show that the nearby dwarf starburst galaxy NGC 4449 has an unusual abundance of luminous red star clusters. Joint constraints from integrated photometry, low-resolution spectroscopy, dynamical mass-to-light ratios, and resolved color-magnitude diagrams provide evidence that some of these clusters are old globular clusters. Spectroscopic data for two massive clusters suggest intermediate metallicities ([Fe/H] ~ -1) and subsolar Mg enhancement ([Mg/Fe] ~ -0.1 to -0.2). One of these clusters may be the nucleus of a tidally disrupting dwarf galaxy; the other is very massive (~ 3 x 10^6 M_sun). We have also identified a population of remote halo globular clusters. NGC 4449 is consistent with an emerging picture of the ubiquity of stellar halos among dwarf galaxies, and study of its globular clusters may help distinguish between accretion and in situ scenarios for such halos.Comment: 15 pages, AJ in pres

    Kinematical and chemical vertical structure of the Galactic thick disk I. Thick disk kinematics

    Full text link
    The variation of the kinematical properties of the Galactic thick disk with Galactic height Z are studied by means of 412 red giants observed in the direction of the south Galactic pole up to 4.5 kpc from the plane. We confirm the non-null mean radial motion toward the Galactic anticenter found by other authors, but we find that it changes sign at |Z|=3 kpc, and the proposed inward motion of the LSR alone cannot explain these observations. The rotational velocity decreases with |Z| by -30 km/s/kpc, but the data are better represented by a power-law with index 1.25, similar to that proposed from the analysis of SDSS data. All the velocity dispersions increase with |Z|, but the vertical gradients are small. The dispersions grow proportionally, with no significant variation of the anisotropy. The ratio sigma_U/sigma_W=2 suggests that the thick disk could have formed from a low-latitude merging event. The vertex deviation increases with Galactic height, reaching ~20 degrees at |Z|=3.5 kpc. The tilt angle also increases, and the orientation of the ellipsoid in the radial-vertical plane is constantly intermediate between the alignment with the cylindrical and the spherical coordinate systems. The tilt angle at |Z|=2 kpc coincides with the expectations of MOND, but an extension of the calculations to higher |Z| is required to perform a conclusive test. Finally, between 2.5 and 3.5 kpc we detect deviations from the linear trend of many kinematical quantities, suggesting that some kinematical substructure could be present.Comment: Accepted for publication in Ap

    Climate Change and Management Impacts on Soybean N Fixation, Soil N Mineralization, N2O Emissions, and Seed Yield

    Get PDF
    Limited knowledge about how nitrogen (N) dynamics are affected by climate change, weather variability, and crop management is a major barrier to improving the productivity and environmental performance of soybean-based cropping systems. To fill this knowledge gap, we created a systems understanding of agroecosystem N dynamics and quantified the impact of controllable (management) and uncontrollable (weather, climate) factors on N fluxes and soybean yields. We performed a simulation experiment across 10 soybean production environments in the United States using the Agricultural Production Systems sIMulator (APSIM) model and future climate projections from five global circulation models. Climate change (2020–2080) increased N mineralization (24%) and N2O emissions (19%) but decreased N fixation (32%), seed N (20%), and yields (19%). Soil and crop management practices altered N fluxes at a similar magnitude as climate change but in many different directions, revealing opportunities to improve soybean systems’ performance. Among many practices explored, we identified two solutions with great potential: improved residue management (short-term) and water management (long-term). Inter-annual weather variability and management practices affected soybean yield less than N fluxes, which creates opportunities to manage N fluxes without compromising yields, especially in regions with adequate to excess soil moisture. This work provides actionable results (tradeoffs, synergies, directions) to inform decision-making for adapting crop management in a changing climate to improve soybean production systems

    Climate Change and Management Impacts on Soybean N Fixation, Soil N Mineralization, N\u3csub\u3e2\u3c/sub\u3eO Emissions, and Seed Yield

    Get PDF
    Limited knowledge about how nitrogen (N) dynamics are affected by climate change, weather variability, and crop management is a major barrier to improving the productivity and environmental performance of soybean-based cropping systems. To fill this knowledge gap, we created a systems understanding of agroecosystem N dynamics and quantified the impact of controllable (management) and uncontrollable (weather, climate) factors on N fluxes and soybean yields. We performed a simulation experiment across 10 soybean production environments in the United States using the Agricultural Production Systems sIMulator (APSIM) model and future climate projections from five global circulation models. Climate change (2020–2080) increased N mineralization (24%) and N2O emissions (19%) but decreased N fixation (32%), seed N (20%), and yields (19%). Soil and crop management practices altered N fluxes at a similar magnitude as climate change but in many different directions, revealing opportunities to improve soybean systems’ performance. Among many practices explored, we identified two solutions with great potential: improved residue management (short-term) and water management (long-term). Inter-annual weather variability and management practices affected soybean yield less than N fluxes, which creates opportunities to manage N fluxes without compromising yields, especially in regions with adequate to excess soil moisture. This work provides actionable results (tradeoffs, synergies, directions) to inform decision-making for adapting crop management in a changing climate to improve soybean production systems

    GHOSTS: The Resolved Stellar Outskirts of Massive Disk Galaxies

    Get PDF
    We show initial results from our ongoing HST GHOSTS survey of the resolved stellar envelopes of 14 nearby, massive disk galaxies. In hierarchical galaxy formation the stellar halos and thick disks of galaxies are formed by accretion of minor satellites and therefore contain valuable information about the (early) assembly process of galaxies. We detect for the first time the very small halo of NGC4244, a low mass edge-on galaxy. We find that massive galaxies have very extended halos, with equivalent surface brightnesses of 28-29 V-mag/arcsec^2 at 20-30 kpc from the disk. The old RGB stars of the thick disk in the NGC891 and NGC4244 edge-on galaxies truncate at the same radius as the young thin disk stars, providing insights into the formation of both disk truncations and thick disks. We furthermore present the stellar populations of a very low surface brightness stream around M83, the first such a stream resolved into stars beyond those of the Milky Way and M31.Comment: To appear in the proceedings of IAUS 241: Stellar Populations as Building Blocks of Galaxie
    • 

    corecore