50 research outputs found

    Variability in river temperature, discharge, and energy flux from the Russian pan‐Arctic landmass

    Get PDF
    We introduce a new Arctic river temperature data set covering 20 gauges in 17 unique Arctic Ocean drainage basins in the Russian pan‐Arctic (ART‐Russia). Warm season 10‐day time step data (decades) were collected from Russian archival sources covering a period from 1929 to 2003 with most data falling in the range from the mid‐1930s to the early 1990s. The water temperature data were combined with river discharge data to estimate energy flux for all basins and over the Russian pan‐Arctic as a whole. Tests for trend were carried out for water temperature, river discharge, and energy flux. Spatially coherent significant increases in the maximum decadal river temperature were found in the European part of the Russian pan‐Arctic. Several other drainage basins showed significant changes, but there was no strong pattern either in the connections between variables or spatially. The trend in area averaged energy flux for the three largest drainage basins (Ob, Yenisey, Lena) combined was found to be significantly decreasing. We speculate that in the Yenisey basin, this decrease was due to large impoundments of river water. The lack of consistency between temperature and energy flux trends was due to the difference in timing between peaks in river temperature and river discharge. The mean area averaged energy flux from the Russian basins was 0.2 W m−2. Using this mean we estimated the total energy flux from the entire Russian pan‐Arctic, both gauged and ungauged, to be 82 EJ a−1

    Arctic-HYDRA Consortium (2010). Arctic-HYDRA: The Arctic Hydrological Cycle Monitoring, Modelling and Assessment Programme.

    Get PDF
    The Arctic-HYDRA networking activity was launched during the IPY period by representatives of national hydrological institutes and academic departments in all Arctic countries. The consortium aims to produce a new quantitative picture of the state of the Arctic Hydrological Cycle at a time when rapid Arctic warming is affecting several domains of the climate system. Other important tasks of the group include support for pan-Arctic hydrological and meteorological modelling efforts and the continuation and expansion of existing observational networks. The present report is based on material compiled and discussed during a series of workshops held by Arctic-HYDRA members in the years 2006-2009

    Using a Balloon-Launched Unmanned Glider to Validate Real-Time WRF Modeling

    Get PDF
    The use of small unmanned aerial systems (sUAS) for meteorological measurements has expanded significantly in recent years. SUAS are efficient platforms for collecting data with high resolution in both space and time, providing opportunities for enhanced atmospheric sampling. Furthermore, advances in mesoscale weather research and forecasting (WRF) modeling and graphical processing unit (GPU) computing have enabled high resolution weather modeling. In this manuscript, a balloon-launched unmanned glider, complete with a suite of sensors to measure atmospheric temperature, pressure, and relative humidity, is deployed for validation of real-time weather models. This work demonstrates the usefulness of sUAS for validating and improving mesoscale, real-time weather models for advancements toward reliable weather forecasts to enable safe and predictable sUAS missions beyond visual line of sight (BVLOS)

    Use of decongestants may disrupt cell signaling pathways that control Tbx gene expression, leading to hypoplastic left heart syndrome

    Get PDF
    Hypoplastic left heart syndrome (HLHS) collectively refers to a range of congenital heart defects, all involving some degree of left ventricular hypoplasia, or underdevelopment of the left ventricle. Additionally, HLHS often involves coarctation of the aorta, and can also include hypoplasia of the ascending aorta, as well as mitral and/or aortic valve stenosis or atresia. HLHS is extremely rare, as it has been reported to occur in only 1 in 5000 live births each year. The cause of HLHS is currently unknown, however much research is being done to discover how and why these defects occur. HLHS is known to be familially inherited in some instances and is also associated with many well-characterized genetic disorders, including Holt-Oram syndrome, Turner’s syndrome, Noonan syndrome, Smith-Lemli-Opitz syndrome, as well as trisomies 13, 18, and 21. Additionally, an autosomal recessive pattern of inheritance has been found amongst some siblings, however, no specific genes have been implicated. Incidence of HLHS also varies significantly in certain geographical regions and some studies have found a seasonal correlation in HLHS, indicating a possible environmental cause

    Temperature dependent c-axis hole mobilities in rubrene single crystals determined by time-of-flight

    Get PDF
    Hole mobilities (μ) in rubrene single crystals (space group Cmca) along the crystallographic c-axis have been investigated as a function of temperature and applied electric field by the time-of-fight method. Measurements demonstrate an inverse power law dependence on temperature, namely,μ=μ0T−n with n = 1.8, from room temperature down to 180 K. At 296 K, the average value of μ was found to be 0.29 cm2/Vs increasing to an average value of 0.70 cm2/Vs at 180 K. Below 180 K a decrease in mobility is observed with further cooling. Overall, these results confirm the anisotropic nature of transport in rubrene crystals as well as the generality of the inverse power law temperature dependence that is observed for field effect mobility measurements in the a-b crystal plane

    A Biopersistence Study following Exposure to Chrysotile Asbestos Alone or in Combination with Fine Particles

    Get PDF
    In designing a study to evaluate the inhalation biopersistence of a chrysotile asbestos that was used as a component of a joint-compound, a feasibility study was initiated to evaluate the short-term biopersistence of the chrysotile alone and of the chrysotile in combination witht the sanded reformulated joint-compound. Two groups of Wistar rats were exposed to either 7RF3 chrysotile (Group 2) or to 7RF3 chrysotile combined with aerosolized sanded joint-compound (Group 3). In addition, a control group was exposed to flltered-air. The chrysotile used in the Ready Mix joint compound is rapidly removed from the lung. The chrysotile alone exposure group had a clearance half-time of fibers L > 20 μm of 2.2 days; in the chrysotile plus sanded exposure group the clearance half-time of fibers L > 20 μm was 2.8 days. However, across all size ranges there was approximately an order of magnitude decrease in the mean number of fibers remaining in the lungs of Group 3 as compared to Group 2 despite similiar aerosol exposures. Histopathological examination showed that the chrysotile exposed lungs had the same appearance as the flltered-air controls. This study uniquely illustrates that additional concurrent exposure to an aerosol of the sanded joint-compound, with large numbers of fine-particles depositing in the lungs, accelerates the recruitment of macrophages, resulting in a tenfold decrease in the number of fibers remaining in the lung. The increased number of macrophages in the chrysotile/sanded joint exposure group was confirmed histologically, with this being the only exposure-related histological finding reported

    Quantification of the pathological response and fate in the lung and pleura of chrysotile in combination with fine particles compared to amosite-asbestos following short-term inhalation exposure

    Get PDF
    The marked difference in biopersistence and pathological response between chrysotile and amphibole asbestos has been well documented. This study is unique in that it has examined a commercial chrysotile product that was used as a joint compound. The pathological response was quantified in the lung and translocation of fibers to and pathological response in the pleural cavity determined. This paper presents the final results from the study. Rats were exposed by inhalation 6 h/day for 5 days to a well-defined fiber aerosol. Subgroups were examined through 1 year. The translocation to and pathological response in the pleura was examined by scanning electron microscopy and confocal microscopy (CM) using noninvasive methods.The number and size of fibers was quantified using transmission electron microscopy and CM. This is the first study to use such techniques to characterize fiber translocation to and the response of the pleural cavity. Amosite fibers were found to remain partly or fully imbedded in the interstitial space through 1 year and quickly produced granulomas (0 days) and interstitial fibrosis (28 days). Amosite fibers were observed penetrating the visceral pleural wall and were found on the parietal pleural within 7 days postexposure with a concomitant inflammatory response seen by 14 days. Pleural fibrin deposition, fibrosis, and adhesions were observed, similar to that reported in humans in response to amphibole asbestos. No cellular or inflammatory response was observed in the lung or the pleural cavity in response to the chrysotile and sanded particles (CSP) exposure. These results provide confirmation of the important differences between CSP and amphibole asbestos
    corecore