9 research outputs found

    Long-term follow-up of surgical resection alone for primary intracranial rostrotentorial tumors in dogs: 29 cases (2002-2013)

    Get PDF
    Intracranial neoplasia is frequently encountered in dogs. After a presumptive diagnosis of intracranial neoplasia is established based on history, clinical signs and advanced imaging characteristics, the decision to treat and which treatment to choose must be considered. The objective of this study is to report survival times (ST) for dogs with intracranial meningiomas and gliomas treated with surgical resection alone (SRA), to identify potential prognostic factors affecting survival, and to compare the results with the available literature. Medical records of 29 dogs with histopathologic confirmation of intracranial meningiomas and gliomas treated with SRA were retrospectively reviewed. For each dog, signalment, clinical signs, imaging findings, type of surgery, treatment, histological evaluation, and ST were obtained. Twenty-nine dogs with a histological diagnosis who survived >7 days after surgery were included. There were 15 (52%) meningiomas and 14 (48%) gliomas. All tumors had a rostrotentorial location. At the time of the statistical analysis, only two dogs were alive. Median ST for meningiomas was 422 days (mean, 731 days; range, 10-2735 days). Median ST for gliomas was 66 days (mean, 117 days; range, 10-730 days). Kaplan-Meier analysis indicated that ST was significantly longer for meningiomas than for gliomas (P<0.05). A negative correlation between the presence of a midline shift and ST (P=0.037) and ventricular compression and ST (P=0.038) was observed for meningiomas. For gliomas, there were no significant associations between ST and any of the variables evaluated. In conclusion, the results of this study suggest that, for dogs that survived >7 days postoperatively, SRA might be an appropriate treatment, particularly for meningiomas, when radiation therapy is not readily available. Also, the presence of midline shift and ventricular compression might be negative prognostic factors for dogs with meningiomas

    Standardisation of canine meningioma grading: Inter‐observer agreement and recommendations for reproducible histopathologic criteria

    Get PDF
    The human grading system is currently applied to canine meningioma, although it has not been validated in dogs. The present study focused on standardising the human grading system applied to canine meningioma. Four veterinary neuropathologists graded 186 canine meningiomas as follows: Grade I tumour, with 50% of the tumour; (6) Report necrosis, small cells, hypercellularity and macronucleoli, even when focal; (7) Report anaplasia if multifocal

    Neuronal glycogen synthesis contributes to physiological aging

    No full text
    Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora’s disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans
    corecore