52 research outputs found

    RAGE does not contribute to renal injury and damage upon ischemia/reperfusion-induced injury.

    Get PDF
    Item does not contain fulltextThe receptor for advanced glycation end products (RAGE) mediates a variety of inflammatory responses in renal diseases, but its role in renal ischemia/reperfusion (I/R) injury is unknown. We showed that during renal I/R, RAGE ligands HMGB1 and S100B are expressed. However, RAGE deficiency does not affect renal injury and function upon I/R-induced injury

    The Role of Toll-Like Receptor 2 in Inflammation and Fibrosis during Progressive Renal Injury

    Get PDF
    Tissue fibrosis and chronic inflammation are common causes of progressive organ damage, including progressive renal disease, leading to loss of physiological functions. Recently, it was shown that Toll-like receptor 2 (TLR2) is expressed in the kidney and activated by endogenous danger signals. The expression and function of TLR2 during renal fibrosis and chronic inflammation has however not yet been elucidated. Therefore, we studied TLR2 expression in human and murine progressive renal diseases and explored its role by inducing obstructive nephropathy in TLR2βˆ’/βˆ’ or TLR2+/+ mice. We found that TLR2 is markedly upregulated on tubular and tubulointerstitial cells in patients with chronic renal injury. In mice with obstructive nephropathy, renal injury was associated with a marked upregulation and change in distribution of TLR2 and upregulation of murine TLR2 danger ligands Gp96, biglycan, and HMGB1. Notably, TLR2 enhanced inflammation as reflected by a significantly reduced influx of neutrophils and production of chemokines and TGF-Ξ² in kidneys of TLR2βˆ’/βˆ’ mice compared with TLR2+/+ animals. Although, the obstructed kidneys of TLR2βˆ’/βˆ’ mice had less interstitial myofibroblasts in the later phase of obstructive nephropathy, tubular injury and renal matrix accumulation was similar in both mouse strains. Together, these data demonstrate that TLR2 can initiate renal inflammation during progressive renal injury and that the absence of TLR2 does not affect the development of chronic renal injury and fibrosis

    Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure

    Get PDF
    Contains fulltext : 152108.PDF (publisher's version ) (Open Access)Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca2+ and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca2+ excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-alphaklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal alphaklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-alphaklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca2+/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development

    Mitochondrial DNA is Released in Urine of SIRS Patients With Acute Kidney Injury and Correlates With Severity of Renal Dysfunction

    No full text
    Systemic inflammatory response syndrome (SIRS) is characterized by the activation of the innate immune system resulting in stimulation of inflammatory responses, coagulation, and platelet activation that may contribute to complication such as the development of acute kidney injury (AKI). AKI importantly worsens the outcome of SIRS, implying the existence of a detrimental cross talk via systemic messages. Mitochondria are a source of damage-associated molecular patterns (DAMPs) and are thought to form a molecular link between tissue injury and stimulation of innate immunity. The role of mitochondrial DNA (mtDNA) in the cross talk between the onset of SIRS and subsequent development of AKI is unknown. Hence, we performed a case control study in critically ill patients with SIRS diagnosed with or without AKI, in which we determined mtDNA levels in plasma and urine, and correlated these to markers of renal impairment, inflammation, coagulation, and platelet activation. In addition, we exposed mice, primary renal tubular epithelial cells (TECs), and platelets to mtDNA or purified mitochondrial ligands, and measured their response to elucidate underlying pathophysiological mechanisms. Our data reveal that increased systemic mtDNA levels in SIRS patients do not correlate with systemic inflammation and renal disease activity. Moreover, AKI does not have an additional effect on circulating mtDNA levels. In contrast, we found that urinary mtDNA levels correlate with an elevated albumin creatinine ratio (ACR) as well as with increased urinary markers of inflammation, coagulation, and platelet activation. Both renal TECs and platelets respond to mtDNA and mtDNA ligands, leading to increased expression of, respectively, inflammatory cytokines and P-selectin. Moreover, activation of platelets results in mtDNA release. Together, these data suggest that circulating mtDNA is probably not important in the detrimental cross talk between SIRS and AKI, whereas renal mtDNA accumulation may be related to intrarenal inflammation, coagulation processes, and renal dysfunction in the pathophysiology of SIR

    Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury.

    Get PDF
    Toll-like receptors (TLRs) can detect endogenous danger molecules released upon tissue injury resulting in the induction of a proinflammatory response. One of the TLR family members, TLR4, is constitutively expressed at RNA level on renal epithelium and this expression is enhanced upon renal ischemia/reperfusion (I/R) injury. The functional relevance of this organ-specific upregulation remains however unknown. We therefore investigated the specific role of TLR4 and the relative contribution of its two downstream signaling cascades, the MyD88-dependent and TRIF-dependent cascades in renal damage by using TLR4-/-, MyD88-/- and TRIF-mutant mice that were subjected to renal ischemia/reperfusion injury. Our results show that TLR4 initiates an exaggerated proinflammatory response upon I/R injury, as reflected by lower levels of chemokines and infiltrating granulocytes, less renal damage and a more preserved renal function in TLR4-/- mice as compared to wild type mice. In vitro studies demonstrate that renal tubular epithelial cells can coordinate an immune response to ischemic injury in a TLR4-dependent manner. In vivo we found that epithelial- and leukocyte-associated functional TLR4 contribute in a similar proportion to renal dysfunction and injury as assessed by bone marrow chimeric mice. Surprisingly, no significant differences were found in renal function and inflammation in MyD88-/- and TRIF-mutant mice compared with their wild types, suggesting that selective targeting of TLR4 directly may be more effective for the development of therapeutic tools to prevent I/R injury than targeting the intracellular pathways used by TLR4. In conclusion, we identified TLR4 as a cellular sentinel for acute renal damage that subsequently controls the induction of an innate immune response

    TLR4 Promotes Fibrosis but Attenuates Tubular Damage in Progressive Renal Injury

    No full text
    Toll-like receptors (TLRs) can orchestrate an inflammatory response upon activation by pathogen-associated motifs and release of endogenous stress ligands during tissue injury. The kidney constitutively expresses most TLRs, including TLR4. The function of TLR4 during the inflammation, tubular atrophy, and fibrosis that accompany progressive renal injury is unknown. Here, we subjected wild-type (WT) and TLR4-deficient mice to unilateral ureteral obstruction and observed elevated levels of TLR4 mRNA in the kidney after obstruction. One day after unilateral ureteral obstruction, TLR4-deficient mice had fewer proliferating tubular epithelial cells and more tubular damage than WT mice; however, TLR4-deficient mice developed considerably less renal fibrosis despite decreased matrix metalloproteinase activity and without significant differences in myofibroblast accumulation. In vitro, TLR4-deficient primary tubular epithelial cells and myofibroblasts produced significantly less type I collagen mRNA after TGF-Ξ² stimulation than WT cells. The reduced fibrosis in TLR4-deficient mice associated with an upregulation of Bambi, a negative regulator of TGF-Ξ² signaling. In conclusion, TLR4 attenuates tubular damage but promotes renal fibrosis by modulating the susceptibility of renal cells to TGF-Ξ². These data suggest that TLR4 signaling may be a therapeutic target for the prevention of renal fibrosis

    Apoptosis and proliferation of TECs of wild type and TLR4βˆ’/βˆ’ mice.

    No full text
    <p>Apoptotic (A) and proliferating (B) tubular epithelial cells in kidneys from wild type (white bars) and TLR4βˆ’/βˆ’ (black bars) mice at one, five and ten days after I/R injury or sham-operation. The amount of apoptotic tubular cells was significantly higher in the kidneys of TLR4βˆ’/βˆ’ mice than in wild type mice five days after I/R injury, whereas ten days after I/R injury the amount of proliferating tubular cells was significantly lower in the kidneys of TLR4βˆ’/βˆ’ than in kidneys of wild type mice as counted in 10 randomly selected non-overlapping high-power fields on outer medulla (magnification Γ—400). Positive tubular epithelial cells from 8 mice per group were counted on renal tissue sections stained for active caspase-3 (apoptosis) and BrdU (proliferation). Data are presented as meanΒ±SEM. * p<0.05.</p

    Levels of proinflammatory cytokines and chemokines in wild type and TLR4βˆ’/βˆ’ mice.

    No full text
    <p>Expression of proinflammatory chemokines KC and MCP-1 in kidney homogenates of wild type (white bars) and TLR4βˆ’/βˆ’ (black bars) mice one day after I/R injury or sham-operation. KC levels were significantly lower in homogenate of TLR4βˆ’/βˆ’ kidneys compared with wild type kidneys, whereas there were no differences observed in MCP-1 levels. Data are meanΒ±SEM of 8 mice per group measured in duplicate (sham-operated animals: nβ€Š=β€Š3/group). * p<0.05.</p

    Renal influx of granulocytes in wild type and TLR4βˆ’/βˆ’ mice.

    No full text
    <p>Influx of granulocytes in kidneys from wild type (white bars) and TLR4βˆ’/βˆ’ (black bars) kidneys 1, 5 and 10 days after renal I/R injury or sham operation. One and ten days after I/R injury the number of granulocytes was significantly lower in kidneys of TLR4βˆ’/βˆ’ mice than in kidneys of wild type mice as counted in 10 randomly selected high-power fields (HPFs) on outer medulla (magnification Γ—400). The amount of granulocytes from 8 mice per group were counted on renal tissue sections stained for Ly-6G and presented as meanΒ±SEM. * p<0.05.</p
    • …
    corecore