53 research outputs found

    Effect of two different preparations of platelet-rich plasma on synoviocytes

    Get PDF
    To analyse the modifications induced by two different platelet-rich plasma (PRP) preparations on osteoarthritis (OA) synoviocytes, by documenting changes in gene expression of factors involved in joint physiopathology.OA synoviocytes were cultured for 7 days in medium with different concentrations of either P-PRP (a pure platelet concentrate without leucocytes but with a limited number of platelets), L-PRP (a higher platelet concentrate containing leucocytes) or platelet-poor plasma (PPP). Gene expression of interleukin (IL)-1beta, IL-6, IL-8/CXCL8, tumour necrosis factor alpha, IL-10, IL-4, IL-13, metalloproteinase-13, tissue inhibitor of metalloproteinase (TIMP)-1, (TIMP)-3, (TIMP)-4, vascular endothelial growth factor, transforming growth factor beta1, fibroblast growth factor (FGF)-2, hepatocyte growth factor (HGF), hyaluronic acid (HA) synthases (HAS)-1, (HAS)-2, and (HAS)-3 was analysed by RT-PCR. HA production was determined in culture supernatants by ELISA.IL-1β, IL-8 and FGF-2 were significantly induced by L-PRP compared to both P-PRP and PPP; HGF was down-modulated by L-PRP versus both P-PRP and PPP, and an inverse dose-response influence was shown for all preparations. Expression level of TIMP-4 was lower in the presence of L-PRP compared with P-PRP. HA production and HAS gene expression did not seem to be modulated by PRP.L-PRP is able to sustain the up-regulation of proinflammatory factors, (IL-1beta, IL-8 and FGF-2), together with a down-modulation of HGF and TIMP-4 expression, two factors that have been recognized as anti-catabolic mediators in cartilage, thus supporting the need to further optimize the PRP preparations to be applied in clinical practice

    Human osteoarthritic cartilage shows reduced in vivo expression of IL-4, a chondroprotective cytokine that differentially modulates IL-1β-stimulated production of chemokines and matrix-degrading enzymes in vitro

    Get PDF
    open10noThis work was supported by grants from Rizzoli Orthopaedic Institute (Ricerca Corrente); University of Bologna (RFO); MIUR (FIRB-RBAP10KCNS); “Cinque per mille” Funds. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.BACKGROUND: In osteoarthritis (OA), an inflammatory environment is responsible for the imbalance between the anabolic and catabolic activity of chondrocytes and, thus, for articular cartilage derangement. This study was aimed at providing further insight into the impairment of the anabolic cytokine IL-4 and its receptors in human OA cartilage, as well as the potential ability of IL-4 to antagonize the catabolic phenotype induced by IL-1β. METHODOLOGY/PRINCIPAL FINDINGS: The in vivo expression of IL-4 and IL-4 receptor subunits (IL-4R, IL-2Rγ, IL-13Rα1) was investigated on full thickness OA or normal knee cartilage. IL-4 expression was found to be significantly lower in OA, both in terms of the percentage of positive cells and the amount of signal per cell. IL-4 receptor type I and II were mostly expressed in mid-deep cartilage layers. No significant difference for each IL-4 receptor subunit was noted. IL-4 anti-inflammatory and anti-catabolic activity was assessed in vitro in the presence of IL-1β and/or IL-4 for 24 hours using differentiated high density primary OA chondrocyte also exhibiting the three IL-4 R subunits found in vivo. Chemokines, extracellular matrix degrading enzymes and their inhibitors were evaluated at mRNA (real time PCR) and protein (ELISA or western blot) levels. IL-4 did not affect IL-1β-induced mRNA expression of GRO-α/CXCL1, IL-8/CXCL8, ADAMTS-5, TIMP-1 or TIMP-3. Conversely, IL-4 significantly inhibited RANTES/CCL5, MIP-1α/CCL3, MIP-1β/CCL4, MMP-13 and ADAMTS-4. These results were confirmed at protein level for RANTES/CCL5 and MMP-13. CONCLUSIONS/SIGNIFICANCE: Our results indicate for the first time that OA cartilage has a significantly lower expression of IL-4. Furthermore, we found differences in the spectrum of biological effects of IL-4. The findings that IL-4 has the ability to hamper the IL-1β-induced release of both MMP-13 and CCL5/RANTES, both markers of OA chondrocytes, strongly indicates IL-4 as a pivotal anabolic cytokine in cartilage whose impairment impacts on OA pathogenesis.openAssirelli E.; Pulsatelli L.; Dolzani P.; Platano D.; Olivotto Eleonora .; Filardo G.; Trisolino G.; Facchini A.; Borzì R.M.; Meliconi R.Assirelli E.; Pulsatelli L.; Dolzani P.; Platano D.; Olivotto Eleonora .; Filardo G.; Trisolino G.; Facchini A.; Borzì R.M.; Meliconi R

    17)脊椎々間板手術症例の検討 : とくに椎間板障害例における手術適応について(第399回千葉医学会整形外科例会,第8回千葉整形外科災害外科臨床懇談会,千葉県労災指定医集談会)

    Get PDF
    <p>Data are expressed as medians and interquartile ranges; comparisons among time points, as determined by Friedman-ANOVA test, and between L-PRP and HA treatments, as determined by the Mann-Whitney U test, are not significant. w = week, m = month</p

    Building a rheumatology biobank for reliable basic/translational research and precision medicine

    Get PDF
    Research biobanks are non-profit structures that collect, manipulate, store, analyze and distribute systematically organized biological samples and data for research and development purposes. Over the recent years, we have established a biobank, the Rheumatology BioBank (RheumaBank) headed by the Medicine and Rheumatology unit of the IRCCS Istituto Ortopedico Rizzoli (IOR) in Bologna, Italy for the purpose of collecting, processing, storing, and distributing biological samples and associated data obtained from patients suffering from inflammatory joint diseases. RheumaBank is a research biobank, and its main objective is to promote large-scale, high-quality basic, translational, and clinical research studies that can help elucidate pathogenetic mechanisms and improve personalization of treatment choice in patients with rheumatoid arthritis (RA), psoriatic arthritis (PsA) and other spondyloarthritides (SpA)

    Platelet Concentrates in Musculoskeletal Medicine

    Get PDF
    Platelet concentrates (PCs), mostly represented by platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) are autologous biological blood-derived products that may combine plasma/platelet-derived bioactive components, together with fibrin-forming protein able to create a natural three-dimensional scaffold. These types of products are safely used in clinical applications due to the autologous-derived source and the minimally invasive application procedure. In this narrative review, we focus on three main topics concerning the use of platelet concentrate for treating musculoskeletal conditions: (a) the different procedures to prepare PCs, (b) the composition of PCs that is related to the type of methodological procedure adopted and (c) the clinical application in musculoskeletal medicine, efficacy and main limits of the different studies

    Signaling pathways in cartilage repair

    No full text
    In adult healthy cartilage, chondrocytes are in a quiescent phase characterized by a fine balance between anabolic and catabolic activities. In ageing, degenerative joint diseases and traumatic injuries of cartilage, a loss of homeostatic conditions and an up-regulation of catabolic pathways occur. Since cartilage differentiation and maintenance of homeostasis are finely tuned by a complex network of signaling molecules and biophysical factors, shedding light on these mechanisms appears to be extremely relevant for both the identification of pathogenic key factors, as specific therapeutic targets, and the development of biological approaches for cartilage regeneration. This review will focus on the main signaling pathways that can activate cellular and molecular processes, regulating the functional behavior of cartilage in both physiological and pathological conditions. These networks may be relevant in the crosstalk among joint compartments and increased knowledge in this field may lead to the development of more effective strategies for inducing cartilage repair. \ua9 2014 by the authors; licensee MDPI, Basel, Switzerland

    Biomaterials: Foreign Bodies or Tuners for the Immune Response?

    No full text
    The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing

    Analysis of cartilage biomarkers in erosive and non-erosive osteoarthritis of the hands

    Get PDF
    none5noneSILVESTRI T.; PULSATELLI L.; DOLZANI P.; PUNZI L.; MELICONI R.SILVESTRI T.; PULSATELLI L.; DOLZANI P.; PUNZI L.; MELICONI R
    corecore