476 research outputs found

    Consistent discretizations: the Gowdy spacetimes

    Get PDF
    We apply the consistent discretization scheme to general relativity particularized to the Gowdy space-times. This is the first time the framework has been applied in detail in a non-linear generally-covariant gravitational situation with local degrees of freedom. We show that the scheme can be correctly used to numerically evolve the space-times. We show that the resulting numerical schemes are convergent and preserve approximately the constraints as expected.Comment: 10 pages, 8 figure

    Undecidability as solution to the problem of measurement: fundamental criterion for the production of events

    Get PDF
    In recent papers we put forth a new interpretation of quantum mechanics, colloquially known as ``the Montevideo interpretation''. This interpretation is based on taking into account fundamental limits that gravity imposes on the measurement process. As a consequence one has that situations develop where a reduction process is undecidable from an evolution operator. When such a situation is achieved, an event has taken place. In this paper we sharpen the definition of when and how events occur, more precisely we give sufficient conditions for the occurrence of events. We probe the new definition in an example. In particular we show that the concept of undecidability used is not ``FAPP'' (for all practical purposes), but fundamental.Comment: 10 pages, contributed to the Castagnino Festschrif

    17 ways to say yes:Toward nuanced tone of voice in AAC and speech technology

    Get PDF
    People with complex communication needs who use speech-generating devices have very little expressive control over their tone of voice. Despite its importance in human interaction, the issue of tone of voice remains all but absent from AAC research and development however. In this paper, we describe three interdisciplinary projects, past, present and future: The critical design collection Six Speaking Chairs has provoked deeper discussion and inspired a social model of tone of voice; the speculative concept Speech Hedge illustrates challenges and opportunities in designing more expressive user interfaces; the pilot project Tonetable could enable participatory research and seed a research network around tone of voice. We speculate that more radical interactions might expand frontiers of AAC and disrupt speech technology as a whole

    The collision of boosted black holes: second order close limit calculations

    Get PDF
    We study the head-on collision of black holes starting from unsymmetrized, Brill--Lindquist type data for black holes with non-vanishing initial linear momentum. Evolution of the initial data is carried out with the ``close limit approximation,'' in which small initial separation and momentum are assumed, and second-order perturbation theory is used. We find agreement that is remarkably good, and that in some ways improves with increasing momentum. This work extends a previous study in which second order perturbation calculations were used for momentarily stationary initial data, and another study in which linearized perturbation theory was used for initially moving holes. In addition to supplying answers about the collisions, the present work has revealed several subtle points about the use of higher order perturbation theory, points that did not arise in the previous studies. These points include issues of normalization, and of comparison with numerical simulations, and will be important to subsequent applications of approximation methods for collisions.Comment: 20 pages, RevTeX, 6 figures included with psfi

    A realist interpretation of quantum mechanics based on undecidability due to gravity

    Get PDF
    We summarize several recent developments suggesting that solving the problem of time in quantum gravity leads to a solution of the measurement problem in quantum mechanics. This approach has been informally called "the Montevideo interpretation". In particular we discuss why definitions in this approach are not "for all practical purposes" (fapp) and how the problem of outcomes is resolved.Comment: 7 pages, IOPAMS style, no figures, contributed to the proceedings of DICE 2010, Castiglioncello, slightly improved versio

    Inspiral, merger and ring-down of equal-mass black-hole binaries

    Get PDF
    We investigate the dynamics and gravitational-wave (GW) emission in the binary merger of equal-mass black holes as obtained from numerical relativity simulations. Results from the evolution of three sets of initial data are explored in detail, corresponding to different initial separations of the black holes. We find that to a good approximation the inspiral phase of the evolution is quasi-circular, followed by a "blurred, quasi-circular plunge", then merger and ring down. We present first-order comparisons between analytical models of the various stages of the merger and the numerical results. We provide comparisons between the numerical results and analytical predictions based on the adiabatic Newtonain, post-Newtonian (PN), and non-adiabatic resummed-PN models. From the ring-down portion of the GW we extract the fundamental quasi-normal mode and several of the overtones. Finally, we estimate the optimal signal-to-noise ratio for typical binaries detectable by GW experiments.Comment: 47 pages, 34 figures, full abstract in paper, revtex4, accepted by PRD, miscellaneous revisions throughout pape

    How the Jones Polynomial Gives Rise to Physical States of Quantum General Relativity

    Get PDF
    Solutions to both the diffeomorphism and the hamiltonian constraint of quantum gravity have been found in the loop representation, which is based on Ashtekar's new variables. While the diffeomorphism constraint is easily solved by considering loop functionals which are knot invariants, there remains the puzzle why several of the known knot invariants are also solutions to the hamiltonian constraint. We show how the Jones polynomial gives rise to an infinite set of solutions to all the constraints of quantum gravity thereby illuminating the structure of the space of solutions and suggesting the existance of a deep connection between quantum gravity and knot theory at a dynamical level.Comment: 7p

    Late-Time Behavior of Stellar Collapse and Explosions: I. Linearized Perturbations

    Get PDF
    Problem with the figures should be corrected. Apparently a broken uuencoder was the cause.Comment: 16pp, RevTex, 6 figures (included), NSF-ITP-93-8

    Evolving the Bowen-York initial data for spinning black holes

    Get PDF
    The Bowen-York initial value data typically used in numerical relativity to represent spinning black hole are not those of a constant-time slice of the Kerr spacetime. If Bowen-York initial data are used for each black hole in a collision, the emitted radiation will be partially due to the ``relaxation'' of the individual holes to Kerr form. We compute this radiation by treating the geometry for a single hole as a perturbation of a Schwarzschild black hole, and by using second order perturbation theory. We discuss the extent to which Bowen-York data can be expected accurately to represent Kerr holes.Comment: 10 pages, RevTeX, 4 figures included with psfi
    • …
    corecore