29 research outputs found

    Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework.

    Get PDF
    A molecular proton reduction catalyst [FeFe](dcbdt)(CO)6 (1, dcbdt = 1,4-dicarboxylbenzene-2,3-dithiolate) with structural similarities to [FeFe]-hydrogenase active sites has been incorporated into a highly robust Zr(IV)-based metal-organic framework (MOF) by postsynthetic exchange (PSE). The PSE protocol is crucial as direct solvothermal synthesis fails to produce the functionalized MOF. The molecular integrity of the organometallic site within the MOF is demonstrated by a variety of techniques, including X-ray absorption spectroscopy. In conjunction with [Ru(bpy)3](2+) as a photosensitizer and ascorbate as an electron donor, MOF-[FeFe](dcbdt)(CO)6 catalyzes photochemical hydrogen evolution in water at pH 5. The immobilized catalyst shows substantially improved initial rates and overall hydrogen production when compared to a reference system of complex 1 in solution. Improved catalytic performance is ascribed to structural stabilization of the complex when incorporated in the MOF as well as the protection of reduced catalysts 1(-) and 1(2-) from undesirable charge recombination with oxidized ascorbate

    Substrate and product binding inside a stimuli-responsive coordination cage acting as singlet oxygen photosensitizer

    Get PDF
    An acridone-based, interpenetrated double cage [3BF4Pd4L8] acts as a photosensitizer for generating singlet oxygen which adds to 1,3-cyclohexadiene in a [2+4] hetero-Diels-Alder reaction to form 2,3-dioxabicyclo[2.2.2]oct-5-ene. Photocatalytic activity was exclusively observed for the assembled cage, whereas the free organic ligand L decomposes upon irradiation. While cage [3BF4Pd4L8] does not accept any organic guests, NMR, MS and single crystal X-ray results reveal that both substrate and product are readily encapsulated in the central pocket of its chloride-activated form [2Cl@Pd4L8]. The system combines multiple functions (photosensitization, allosteric activation and guest uptake) within a structurally complex, mechanically-bound self-assembly built up from a simple and readily accessible ligand

    Mimicking the Outer Coordination Sphere in [FeFe]-Hydrogenase Active Site Models : From Extended Ligand Design to Metal-Organic Frameworks

    No full text
    Biomimetic catalysis is an important research field, as a better understanding of nature´s powerful toolbox for the conversion of molecules can lead to technological progress. [FeFe]-hydrogenases are very efficient catalysts for hydrogen production. These enzymes play a crucial role in the metabolism of green algae and certain cyanobacteria. Their active site consists of a diiron complex that is embedded in an interactive protein matrix. In this thesis, two pathways for mimicking the outer coordination sphere effects resulting from the protein matrix are explored. The first is the construction of model complexes containing phosphine ligands that are coordinated to the iron center as well as covalently linked to the bridging ligand of the complex. The effect of such linkers is an increased energy barrier for the rotation of the Fe(CO2)(PL3)-subunit, which potentially could stabilize a terminal hydride that is an important intermediate in the proton reduction cycle. The second pathway follows the incorporation of [FeFe]-hydrogenase active site model complexes into metal-organic frameworks (MOFs). Resulting MOF-catalysts exhibit increased photocatalytic activity compared to homogenous references due to a stabilizing effect on catalytic intermediates by the surrounding framework. Catalyst accessibility within the MOF and the influence of the framework on chemical reactivity are examined in the work presented. Furthermore, an initial step towards application of MOF-catalysts in a device was made by interfacing them with electrodes. The work of this thesis highlights strategies for the improvement of biomimetic model catalysts and the knowledge gained can be transferred to other systems mimicking the function of enzymes.

    Photochemical Hydrogen Production with Metal-Organic Frameworks

    No full text
    Metal-Organic Frameworks (MOFs) have attracted increasing attention for the creation of solid-state platforms for catalysis applications. In this review article, we present strategies to employ MOF-based materials in photochemical hydrogen production. The scope ranges from the incorporation of single functions (catalyst or photosensitizer) to multifunctional MOFs that combine both light-harvesting and catalysis in one scaffold

    Photochemical Hydrogen Production with Metal–Organic Frameworks

    Full text link

    [FeFe] Hydrogenase active site model chemistry in a UiO-66 metal–organic framework

    No full text
    The reactivity of [Fe2(dcbdt)(CO)6] (1) confined in a UiO-66(Zr) metal–organic framework towards CO ligand substitutions with phosphines of different sizes was investigated. The reaction with smaller phosphines (PX3, X = Me, Et) is more selective compared to analogous reactions in homogenous solution phase, and two CO ligands at up to 80% of all [FeFe] sites in UiO-66–1 are replaced. The produced [Fe2(dcbdt)(CO)4(PX3)2] complexes in the UiO-66 matrix behave like typical [FeFe] hydrogenase active site model complexes, are reduced at more cathodic potentials than their hexacarbonyl analogues, and form bridging hydrides under acidic conditions

    Mixed-ligand metal-organic frameworks and heteroleptic coordination cages as multifunctional scaffolds - a comparison

    No full text
    Porous nanostructures and materials based on metal-mediated self-assembly have developed into a vibrantly studied subdiscipline of supramolecular chemistry during the past decades. In principle, two branches of such coordination compounds can be distinguished: Metal–organic frameworks (MOFs) on the one side represent infinite porous networks of metals or metal clusters that are connected via organic ligands to give solid-state materials. On the other hand, metal–organic cages (MOCs) are discrete and soluble systems with only a limited number of pores. Formation of a particular structure type is achieved by carefully balancing the donor site angles within the ligands as well as the nature and coordination geometry of the metal component. Years of research on MOFs and MOCs has yielded numerous types of well-defined porous crystals and complex supramolecular architectures. Since various synthetic routes and postsynthetic modification methods have been established, the focus of recent developments has moved toward the preparation of multifunctional systems that are able to mimic the structural and functional complexity of natural enzymes

    Increasing structural and functional complexity in self-assembled coordination cages

    No full text
    Progress in metallo-supramolecular chemistry creates potential to synthesize functional nano systems and intelligent materials of increasing complexity. In the past four decades, metal-mediated self-assembly has produced a wide range of structural motifs such as helicates, grids, links, knots, spheres and cages, with particularly the latter ones catching growing attention, owing to their nano-scale cavities. Assemblies serving as hosts allow application as selective receptors, confined reaction environments and more. Recently, the field has made big steps forward by implementing dedicated functionality, e.g. catalytic centres or photoswitches to allow stimuli control. Besides incorporation in homoleptic systems, composed of one type of ligand, desire arose to include more than one function within the same assembly. Inspiration comes from natural enzymes that congregate, for example, a substrate recognition site, an allosteric regulator element and a reaction centre. Combining several functionalities without creating statistical mixtures, however, requires a toolbox of sophisticated assembly strategies. This review showcases the implementation of function into self-assembled cages and devises strategies to selectively form heteroleptic structures. We discuss first examples resulting from a combination of both principles, namely multicomponent multifunctional host–guest complexes, and their potential in application in areas such as sensing, catalysis, and photo-redox systems
    corecore