187 research outputs found

    A novel combinatorial technique for simultaneous quantification of oxygen radicals and aggregation reveals unexpected redox patterns in the activation of platelets by different physiopathological stimuli

    Get PDF
    This is the author accepted manuscript. The final version is available fromFerrata Storti Foundation via the DOI in this recordThe regulation of platelets by oxidants is critical for vascular health and may explain thrombotic complications in diseases such as diabetes and dementia, but remains poorly understood. Here, we describe a novel technique combining electron paramagnetic resonance spectroscopy and turbidimetry, which has been utilised to monitor simultaneously platelet activation and oxygen radical generation. This technique has been used to investigate the redox-dependence of human and mouse platelets. Using selective peptide inhibitors of NOXs on human platelets and genetically modified mouse platelets (NOX1-/- or NOX2-/-), we discovered that:1) intracellular but not extracellular superoxide anion generated by NADPH oxidases (NOXs) is critical for platelet activation by collagen; 2) superoxide dismutation to hydrogen peroxide is required for thrombin-dependent activation; 3) NOX1 is the main source of oxygen radicals in response to collagen, while NOX2 is critical for activation by thrombin; 4) two platelet modulators, namely oxidised low density lipoproteins (oxLDL) and amyloid peptide β (Aβ), require activation of both NOX1 and NOX2 to pre-activate platelets. This study provides new insights on the redox dependence of platelet activation. It suggests the possibility of selectively inhibiting platelet agonists by targeting either NOX1 (for collagen) or NOX2 (for thrombin). Selective inhibition of either NOX1 or NOX2 impairs the potentiatory effect of tested platelet modulators (oxLDL and Aβ), but does not completely abolish platelet haemostatic function. This information offers new opportunities for the development of disease specific antiplatelet drugs with limited bleeding side effects by selectively targeting one NOX isoenzyme.British Heart Foundatio

    A novel flow cytometry assay using dihydroethidium as redox-sensitive probe reveals NADPH oxidase-dependent generation of superoxide anion in human platelets exposed to amyloid peptide β

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordReactive oxygen species (ROS) generation is critical in the regulation of platelets, which has important implications in the modulation of hemostasis and thrombosis. Nonetheless, despite several assays have been described and successfully utilized in the past, the analysis of ROS generation in human platelets remains challenging. Here we show that dihydroethidium (DHE) allows the characterization of redox responses upon platelet activation by physiological and pathological stimuli. In particular, the flow cytometry assay that we describe here allowed us to confirm that thrombin, collagen-related peptide (CRP) and arachidonic acid but not adenosine diphosphate (ADP) stimulate superoxide anion formation in a concentration-dependent manner. 0.1unit/ml thrombin, 3 μg/ml CRP and 30 μM arachidonic acid are commonly used to stimulate platelets in vitro and here were shown to stimulate a significant increase in superoxide anion formation. The ROS scavenger N-acetylcysteine (NAC) abolished superoxide anion generation in response to all tested stimuli, but the pan-NADPH oxidase (NOX) inhibitor VAS2870 only inhibited superoxide anion formation in response to thrombin and CRP. The involvement of NOXs in thrombin and CRP-dependent responses was confirmed by the inhibition of platelet aggregation induced by these stimuli by VAS2870, while platelet aggregation in response to arachidonic acid was insensitive to this inhibitor. In addition, the pathological platelet stimulus amyloid β (Aβ) 1–42 peptide induced superoxide anion formation in a concentration-dependent manner. Aβ peptide stimulated superoxide anion formation in a NOX-dependent manner, as proved by the use of VAS2870. Aβ 1–42 peptide displayed only moderate activity as an aggregation stimulus, but was able to significantly potentiate platelet aggregation in response to submaximal agonists concentrations, such as 0.03 unit/ml thrombin and 10 μM arachidonic acid. The inhibition of NOXs by 10 μM VAS2870 abolished Aβ-dependent potentiation of platelet aggregation in response to 10 μM arachidonic acid, suggesting that the pro-thrombotic activity of Aβ peptides depends on NOX activity. Similar experiments could not be performed with thrombin or collagen, as NOXs are required for the signaling induced by these stimuli. These findings shed some new light on the pro-thrombotic activity of Aβ peptides. In summary, here we describe a novel and reliable assay for the detection of superoxide anion in human platelets. This is particularly important for the investigation of the pathophysiological role of redox stress in platelets, a field of research of increasing importance, but hindered by the absence of a reliable and easily accessible ROS detection methodology applicable to platelets

    Reactive oxygen species:physiological roles in the regulation of vascular cells

    Get PDF

    A novel flow cytometry assay using dihydroethidium as redox-sensitive probe reveals NADPH oxidase-dependent generation of superoxide anion in human platelets exposed to amyloid peptide β

    Get PDF
    Reactive oxygen species (ROS) generation is critical in the regulation of platelets, which has important implications in the modulation of hemostasis and thrombosis. Nonetheless, despite several assays have been described and successfully utilized in the past, the analysis of ROS generation in human platelets remains challenging. Here we show that dihydroethidium (DHE) allows the characterization of redox responses upon platelet activation by physiological and pathological stimuli. In particular, the flow cytometry assay that we describe here allowed us to confirm that thrombin, collagen-related peptide (CRP) and arachidonic acid but not adenosine diphosphate (ADP) stimulate superoxide anion formation in a concentration-dependent manner. 0.1unit/ml thrombin, 3 μg/ml CRP and 30 μM arachidonic acid are commonly used to stimulate platelets in vitro and here were shown to stimulate a significant increase in superoxide anion formation. The ROS scavenger N-acetylcysteine (NAC) abolished superoxide anion generation in response to all tested stimuli, but the pan-NADPH oxidase (NOX) inhibitor VAS2870 only inhibited superoxide anion formation in response to thrombin and CRP. The involvement of NOXs in thrombin and CRP-dependent responses was confirmed by the inhibition of platelet aggregation induced by these stimuli by VAS2870, while platelet aggregation in response to arachidonic acid was insensitive to this inhibitor. In addition, the pathological platelet stimulus amyloid β (Aβ) 1–42 peptide induced superoxide anion formation in a concentration-dependent manner. Aβ peptide stimulated superoxide anion formation in a NOX-dependent manner, as proved by the use of VAS2870. Aβ 1–42 peptide displayed only moderate activity as an aggregation stimulus, but was able to significantly potentiate platelet aggregation in response to submaximal agonists concentrations, such as 0.03 unit/ml thrombin and 10 μM arachidonic acid. The inhibition of NOXs by 10 μM VAS2870 abolished Aβ-dependent potentiation of platelet aggregation in response to 10 μM arachidonic acid, suggesting that the pro-thrombotic activity of Aβ peptides depends on NOX activity. Similar experiments could not be performed with thrombin or collagen, as NOXs are required for the signaling induced by these stimuli. These findings shed some new light on the pro-thrombotic activity of Aβ peptides. In summary, here we describe a novel and reliable assay for the detection of superoxide anion in human platelets. This is particularly important for the investigation of the pathophysiological role of redox stress in platelets, a field of research of increasing importance, but hindered by the absence of a reliable and easily accessible ROS detection methodology applicable to platelets

    Vascular Regenerative Surgery: Promised Land for Tissue Engineers?

    Get PDF
    Cardiovascular cell therapy is a promising new eld for the development of treatments for cardiovascular diseases, which remain a major cause of mortality around the world. In this review, we highlight the options currently available for the development of speci c cell therapy approaches applied to regeneration of cardiac and vascular tissues. Different cell types have attracted a lot of attention and extensive investigations for the treatment of vascular diseases, including embryonic stem cells, mesenchymal stem cells, induced pluripotent stem cells, and endothelial progenitors. The combination of human cells and increasingly safe and physiologically compliant biomaterials is currently offering an unprecedented opportunity to develop effective cell therapy for either major blood vessels or the microvasculature. Ef cacy and safety of cell therapy are the challenges for the new generation of regenerative medicine scientists determined to develop new remedies for car- diovascular diseases. Here we present the state of the art in this biomedical eld and the options in terms of cell types and biomaterials currently available for cardiovascular cell therapy

    Amyloid peptide β1-42 induces integrin αIIbβ3 activation, platelet adhesion and thrombus formation in a NADPH oxidase-dependent manner

    Get PDF
    This is the final version. Available on open access from Hindawi Publishing Corporation via the DOI in this recordThe progression of Alzheimer’s dementia is associated with neurovasculature impairment, which includes inflammation, microthromboses, and reduced cerebral blood flow. Here, we investigate the effects of β amyloid peptides on the function of platelets, the cells driving haemostasis. Amyloid peptide β1-42 (Aβ1-42), Aβ1-40, and Aβ25-35 were tested in static adhesion experiments, and it was found that platelets preferentially adhere to Aβ1-42 compared to other Aβ peptides. In addition, significant platelet spreading was observed over Aβ1-42, while Aβ1-40, Aβ25-35, and the scAβ1-42 control did not seem to induce any platelet spreading, which suggested that only Aβ1-42 activates platelet signalling in our experimental conditions. Aβ1-42 also induced significant platelet adhesion and thrombus formation in whole blood under venous flow condition, while other Aβ peptides did not. The molecular mechanism of Aβ1-42 was investigated by flow cytometry, which revealed that this peptide induces a significant activation of integrin αIIbβ3, but does not induce platelet degranulation (as measured by P-selectin membrane translocation). Finally, Aβ1-42 treatment of human platelets led to detectable levels of protein kinase C (PKC) activation and tyrosine phosphorylation, which are hallmarks of platelet signalling. Interestingly, the NADPH oxidase (NOX) inhibitor VAS2870 completely abolished Aβ1-42-dependent platelet adhesion in static conditions, thrombus formation in physiological flow conditions, integrin αIIbβ3 activation, and tyrosine- and PKC-dependent platelet signalling. In summary, this study highlights the importance of NOXs in the activation of platelets in response to amyloid peptide β1-42. The molecular mechanisms described in this manuscript may play an important role in the neurovascular impairment observed in Alzheimer’s patients.Alzheimer´s Research UKBritish Heart FoundationNational Institute for Health Research (NIHR

    Amyloid peptide β 1-42 induces integrin α IIb β 3 activation, platelet adhesion, and thrombus formation in a NADPH Oxidase-Dependent Manner

    Get PDF
    The progression of Alzheimer's dementia is associated with neurovasculature impairment, which includes inflammation, microthromboses, and reduced cerebral blood flow. Here, we investigate the effects of β amyloid peptides on the function of platelets, the cells driving haemostasis. Amyloid peptide β1-42 (Aβ1-42), Aβ1-40, and Aβ25-35 were tested in static adhesion experiments, and it was found that platelets preferentially adhere to Aβ1-42 compared to other Aβ peptides. In addition, significant platelet spreading was observed over Aβ1-42, while Aβ1-40, Aβ25-35, and the scAβ1-42 control did not seem to induce any platelet spreading, which suggested that only Aβ1-42 activates platelet signalling in our experimental conditions. Aβ1-42 also induced significant platelet adhesion and thrombus formation in whole blood under venous flow condition, while other Aβ peptides did not. The molecular mechanism of Aβ1-42 was investigated by flow cytometry, which revealed that this peptide induces a significant activation of integrin αIIbβ3, but does not induce platelet degranulation (as measured by P-selectin membrane translocation). Finally, Aβ1-42 treatment of human platelets led to detectable levels of protein kinase C (PKC) activation and tyrosine phosphorylation, which are hallmarks of platelet signalling. Interestingly, the NADPH oxidase (NOX) inhibitor VAS2870 completely abolished Aβ1-42-dependent platelet adhesion in static conditions, thrombus formation in physiological flow conditions, integrin αIIbβ3 activation, and tyrosine- and PKC-dependent platelet signalling. In summary, this study highlights the importance of NOXs in the activation of platelets in response to amyloid peptide β1-42. The molecular mechanisms described in this manuscript may play an important role in the neurovascular impairment observed in Alzheimer's patients

    Citrus allergy from pollen to clinical symptoms

    Get PDF
    Allergy to citrus fruits is often associated with pollinosis and sensitization to other plants due to a phenomenon of cross-reactivity. The aims of the present study were to highlight the cross-reactivity among citrus and the major allergenic pollens/fruits, throughout clinical and molecular investigations, and to evaluate the sensitization frequency to citrus fruits in a population of children and adults with pollinosis. We found a relevant percentage of sensitisation (39%) to citrus fruits in the patients recruited and in all of them the IgE-mediated mechanism has been confirmed by the positive response to the prick-to-prick test. RT-PCR experiments showed the expression of Cit s 1, Cit s 3 and a profilin isoform, already described in apple, also in Citrus clementine pollen. Data of multiple sequence alignments demonstrated that Citrus allergens shared high percentage identity values with other clinically relevant species (i.e. Triticum aestivum, Malus domestica), confirming the possible cross-allergenicity citrus/grasses and citrus/apple. Finally, a novelty of the present work has been the expression of two phospholipaseA2 isoforms (PLA2 \u3b1 and \u3b2) in Citrus as well as in Triticum pollens; being PLA2 able to generate pro-inflammatory factors, this enzyme could participate in the activation of the allergenic inflammatory cascade

    Distribución del cangrejo rojo Procambarus clarkii Girard, 1859 (Decapoda, Cambaridae) en Extremadura

    Get PDF
    This paper presents the distribution of red swamp crayfish in Extremadura based in samplings carried out in 407 grid cells (10 x 10 km) derived from the standard UTM map. Red swamp crayfish was found in 69.77% of sites surveyed. Thus this species inhabits in practically all region except for areas higher than 750 m of altitude. Males outnumbered females for all size classes. Sex ratio was 1.41:1.En este trabajo se presenta la distribución del cangrejo rojo en Extremadura en base a los muestreos realizados en 407 cuadrículas de 10 x 10 km, habiendo sido detectado en 69.77% de las cuadrículas prospectadas, por lo que llega a ocupar la casi totalidad de la región con excepción de las zonas con altitudes superiores a 750 m. En todas las clases de talla analizadas predominan los machos sobre las hembras en una relación 1.41:1
    • …
    corecore