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Reactive Oxygen Species: Physiological Roles in the Regulation of
Vascular Cells

D. Varaand G. Pula’

Department of Pharmacy and Pharmacology, Centre for Regenerative Medicine, Claverton Campus,
University of Bath, Bath, BA2 7AY, UK

Abstract: Reactive oxygen species (ROS) are now appreciated to play several important roles in a number of
biological processes and regulate cell physiology and function. ROS are a heterogeneous chemical class that
includes radicals, such as superoxide ion (O2"), hydroxyl radical (OH") and nitric oxide (NO"), and non-radicals,
such as hydrogen peroxide (H203), singlet oxygen (102), hypochlorous acid (HOCI), and peroxynitrite (NO3). In
the cardiovascular system, besides playing a critical role in the development and progression of vasculopathies
and other important pathologies such as congestive heart failure, atherosclerosis and thrombosis, ROS also
regulate physiological processes. Evidence from a wealth of cardiovascular research studies suggests that
ROS act as second messengers and play an essential role in vascular homeostasis by influencing discrete
signal transduction pathways in various systems and cell types. They are produced throughout the vascular
system, regulate differentiation and contractility of vascular smooth muscle cells, control vascular endothelial
cell proliferation and migration, mediate platelet activation and haemostasis, and significantly contribute to the
immune response. Our understanding of ROS chemistry and cell biology has evolved to the point of realizing
that different ROS have distinct and important roles in cardiovascular physiology. This review will outline
sources, functions and molecular mechanisms of action of different ROS in the cardiovascular system and will
describe their emerging role in healthy cardiovascular physiology and homeostasis.

Keywords: Cardiovascular system, endothelial, hydrogen peroxide, platelet, reactive oxygen species, redox,

smooth muscle, superoxide anion.

BIOCHEMISTRY AND REGULATION OF ROS

ROS are a heterogeneous class of molecules
characterized by one or more highly reactive oxygen
atoms characterized by a partially reduced state, short
half-life and strong oxidant activity (Table 1). They are
a product of aerobic metabolism and are generated by
the respiratory chain [1] or by other cellular enzymes,
including nicotinamide adenine dinucleotide phosphate-
oxidase (NOX [2]), xanthine oxidase (XO [3]),
lipoxygenase (LOX [4]), cyclooxygenase (COX [5]) and
nitric oxide synthase (NOS [6]). The superoxide anion
(O2") is generated by one-electron reduction of
molecular oxygen and represents the precursor of most
ROS [7]. The dismutation of O, leads to the
generation hydrogen peroxide (H.O,) via spontaneous
reactions in aqueous solution or via reactions catalyzed
by superoxide dismutases (SODs [8]). H,0, can be
converted into highly reactive hydroxyl radicals (OH’)
via the Haber—Weiss reaction [9], in which H,0, can be
partially reduced to OH" in a reaction requiring O,".
This process is slow but greatly enhanced in the
presence of the redox-cycling metal Fe*”* which
functions as electron acceptor to generate O, from O,”
(Reaction 1) and as electron donor in the Fenton
reaction leading to H,O, degradation (Reaction 2). The
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net reaction is the consumption of one H,O, and one
0O," molecule to generate one O,, one OH and one
OH’ (Reaction 3) [10]:

Fe* + 0,” — Fe®* +0O2 (Reaction 1)

Fe*" + Hy,0, — Fe® + OH + OH’ (Fenton reaction)
(Reaction 2)

0O, + H,0, — 02 + OH ™ + OH’ (net reaction) (Reaction 3)

Alternatively, the enzyme myeloperoxidase (MPO)
can convert H,O, into the highly reactive ROS
hypochlorous acid (HOCI) [11]. Another important ROS
in cell biology is singlet oxygen ('0,), which is a
transiently excited state of molecular oxygen generated
by natural photochemical and photobiological
processes [12]. '0, plays an important role in
degenerative phenomena such as photodegradation,
aging and photocarcinogenesis [13]. Finally, nitric oxide
(NO") is also an important ROS and is generated by the
oxidation of L-arginine to L-citrulline catalyzed by nitric
oxide synthases (NOS). Three types of NOS have
been described so far: neuronal NOS (nNOS),
inducible NOS (iNOS), and endothelial NOS (eNOS)
[14]. NO' has been shown to exert important
physiological functions via activation of soluble guanylyl
cyclase (sGC) and generation of cyclic guanylate
phosphate (cGMP), which include vasodilation, platelet
inhibition and immune response [15-19]. NO’ reacts
rapidly with O2™ to generate the physiological oxidant
peroxynitrite (NO3  or NO3) [20, 21]. NO; reacts with
different biomolecules including CO, (that generates

© 2014 Bentham Science Publishers
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Table 1. Relevant reactive oxygen species (ROS). This table presents chemical structure (first column), name and
abbreviation (second column) and most characterized metabolic origin of the most important ROS for human
health.
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other active oxidants such as carbonate radical (CO3")
and nitrogen dioxide (‘NO;)), peroxiredoxins and
glutathione peroxidase (that generates nitrite (NO,)),
and different heme proteins [22, 23]. Collectively,
oxidants derived from NO’ are indicated as reactive
nitrogen species (RNS). These include ‘NO; and N,O3
and play an important role in the regulation of cell
death and apoptosis [24].

Redox homeostasis is critical in maintaining healthy
biological systems; therefore ROS can be eliminated by
transformation into less reactive molecules. The most
important example is catalase [25], which catalyzes the
decomposition of H,O, to water and oxygen. In view of
the activity of catalases, above-mentioned SODs can
be considered crucial for ROS detoxification because

they provide the substrate of catalases by transforming
02" into H,0, [26]. Enzymes of the glutathione redox
cycle are also important for controlling intracellular
ROS concentrations by coupling the reduction of
peroxides with the oxidation of glutathione (GSH) to
glutathione disulfide (GSSG), which in turn is reduced
back to GSH by glutathione reductase [27], thioredoxin
reductase [28] and glutaredoxins [29]. In order to
maintain the redox homeostasis of the cells following
oxidative stress events, the reduction of GSSG and
oxidized thioredoxins is guaranteed by an increase in
the production of NADPH, which is induced by the
inhibition of the glycolytic enzyme pyruvate kinase by
direct oxidation of Cys358 and the consequent
upregulation of the pentose phosphate pathway [30].
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Finally, another possible mechanism of ROS
detoxification is their non-enzymatic reaction with
ascorbate and a-ketoacids, such as pyruvate, a-
ketoglutarate and oxaloacetate [31, 32].

Besides enzymatic degradation or transformation of
ROS, antioxidants can directly react with ROS to
eliminate them or transform them into less reactive
molecules [33]. A common feature of antioxidant
molecules is an aromatic ring that can accommodate
unpaired electrons of ROS. This is the case of vitamin
E (lipophilic) and vitamin C (hydrophilic), which can
donate electrons to hydroxyl or peroxyl radicals to form
water or stable hydroxyl molecules, respectively (Fig.
1). Interestingly, vitamin C can also regenerate vitamin
E and other antioxidants after their oxidation by
transferring an unpaired electron to them, while the
regeneration of active vitamin C depends on the activity
of NADH/NADPH-dependent reductases [34]. The
antioxidant potential of vitamin E and vitamin C has
suggested their use to protect the cardiovascular
system from degenerative disease such as
atherosclerosis [35]. Another physiological molecule
with antioxidant properties initially proposed to protect
against cardiovascular diseases is uric acid [36].
Despite its ability to detoxify ROS [37], the role of uric
acid in the cardiovascular system has been re-
evaluated and this molecule is now considered a cause
of cardiovascular diseases rather than a mechanism of
defense [38]. The tripeptide GSH has been proposed
as an important physiological antioxidant involved in
the redox regulation of cell physiology and health [39].
Because of the potent reducing activity of the thiol
group of its cysteine residue and the millimolar
concentrations that this molecule reaches within cells,
GSH can be considered the most important line of
defense against ROS accumulation. Glutathione S-
transferases (GST) and glutathione peroxidases (GPx)
catalyze the reduction of ROS, which is associated with
the oxidation of GSH and its disulfide bridge mediated
dimerization to GSSG. The reduction of GSSG to GSH
by glutathione reductases maintains the balance
between GSH and GSSG that is critical for cell
homeostasis and survival. Recent evidence in non-
mammalian eukaryotic cells suggests that the
GSH:GSSG is different in different cell compartments,
which can have an important function in redox stress
detection and response [29]. In addition to
physiological antioxidants, several synthetic and plant
antioxidants are known. The former are mainly utilized
for food conservation and not for human health
because of their potential cell toxicity, where the latter
are heavily investigated for biomedical purposes.
Phenolics, flavonoids, carotenoids, steroids and thiol
compounds from a variety of plants, such as grape,
green tea, garlic, ginger, beetroot, ginseng, curcuma,
ginkgo, green tea and rosemary have been proposed
as natural antioxidants for human consumption in order
to fight the negative effects of free radicals in aging and
disease [40-44].
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ROS-DEPENDENT POST-TRANSLATIONAL
MODIFICATION OF PROTEINS

Direct reaction with amino acid residues and protein
post-translation  modification is critical for the
physiological function of ROS. ROS can directly react
with amino acid residues (Fig. 2) and affect protein
folding, trafficking, degradation and activity (Table 2)
[45], which have very important physio-pathological
consequences for human health. The most important
and investigated protein modification by ROS is cysteine
oxidation by H>O,or HOCI [23]. The products of cysteine
oxidation by H,O, or HOCI are H,O or CI, respectively,
and most importantly cysteine sulfenic acid that can
undergo further oxidation to generate cysteine sulfinic
acid and cysteine sulfonic acid or can form
intramolecular or intermolecular disulfide bridges [45].
Recently, the generation of cysteine sulfenic acid by
ROS has been described as necessary for endothelial
cell migration and pro-angiogenic responses [46]. The
post-translational modification of proteins by OH’ can
also occur via reversible reaction with methionine
residues to form methionine sulfoxide [47], which can be
reduced back to methionine by the enzyme methionine
sulfoxide reductase [48], or irreversible oxidation of
lysine, arginine, proline and histidine to form protein
carbonyls [49]. Besides its role in cysteine oxidation
described above [50], H2O2 can also post-translationally
maodify proteins by oxidizing histidines to 2-oxo-histidines
[51]. Thiol groups of cysteines can react with NO', which
leads to generation of S-nitrosylated cysteines [52].
Although, the activity of certain enzymes including S-
nitroso-glutathione  (GSNO) reductase facilitates
cysteine S-nitrosylation, this reaction does not appear to
be catalysed by a specific group of enzymes [53].
Cysteine  S-nitrosylation  affects  protein-protein
interactions in multiprotein complexes and regulates the
activity of a variety of proteins including metabolic
enzymes, oxidoreductases, proteases, protein kinases
and phosphatases, membrane receptors, ion channels
and transcription factors [53, 54]. In addition, NO3 has
been shown to efficiently react with proteins by tyrosine
nitration, which adds in a covalent manner a nitro group
(NO2) to the aromatic of this amino acid and forms 3-
nitrotyrosine [55, 56]. Tyrosine nitration significantly
affects the activity and the proteolytic degradation of
proteins [57], which underlies the key role of this post-
translational modification of proteins in aging and
degenerative diseases such as atherosclerosis and
neurodegeneration [58, 59]. Finally, HOCI can also
modify proteins by oxidation of cysteines to sulfenic acid
or tyrosines to chlorotyrosine [11].

The oxidation of cysteine by ROS has important
functional consequences for protein phosphatases and
protein kinases [60]. Several protein phosphatases are
inhibited by ROS as a consequence of the oxidation of
key cysteine residues in their catalytic site [61-63]. This
results in a net increase in the phosphorylation of their
targets and is often mistaken as a positive regulation of
a protein kinase with similar specificity. Examples of
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Fig. (1). Natural antioxidants. This figure represents the structure and chemical mechanism of action for vitamins E as
detoxifier of hydroxyl radicals (A) and vitamin C as detoxifier of peroxyl radicals (B).

protein phosphatases negatively regulated by ROS are
protein tyrosine phosphatase 1B (PTP1B) [64], tyrosine
phosphatase 2a and 5 (PTP2A and PTP5) [65], mitogen-
activated protein kinase phosphatase (MKP) [66] and
focal adhesion kinase (FAK) tyrosine phosphatase [67].
ROS-dependent modification of protein phosphatase has
been suggested to play a dual role of temporary inhibition
of the catalytic activity while protecting the phosphatase
from permanent inactivation and degradation, such as in
the case of PTP1B [68]. On the other hand, several
protein kinases are activated by ROS, which plays an
important role in vascular homeostasis [69]. For example,
apoptosis signal-regulated kinase 1 (ASK1) of the MAPK
family is directly activated by cysteine oxidation [70] and
inhibited by interaction with and consequent reduction by
thioredoxin [25, 71]; ROS-dependent oxidation of two
specific cysteines within the redox centre of thioredoxin
abolishes the interaction with ASK1 and facilitates the
activation of the kinase in a redox-dependent manner
[72]. Similarly dependent on cysteine oxidation by ROS
and disulfide bridge formation is the activation of Src
family kinases, with the activation in response to NO and
H,O, depending on the oxidation of a yet unidentified
cysteine residue [73] and two cysteines residues in the
kinase domain responsible for the activation in response
to LOX-derived ROS [74]. The regulation of Src family
kinases by ROS is nevertheless still controversial
because of studies reporting an inhibition of these
enzymes by HyO, in fibroblast and endothelial cell
cultures [75]. Members of protein kinase C (PKC) family
also display ROS-dependent regulation, although their
regulation appears to be more complex. Several reports
describe ROS-dependent oxidation of cysteines within
regulatory and catalytic domains of PKC leading to kinase

activation [76-78]. In contrast, redox-dependent oxidation
and formation of intra- and inter-molecular disulfide
bridges have been shown to inactivate different PKC
isozymes [79, 80]. The different types and concentrations
of ROS seem therefore critical to determine how protein
kinase activity is affected. Interestingly, PKC has been
shown to be activated in a H,O,—dependent manner in
pulmonary smooth muscle and vascular cells [81], which
is likely to play a key role in the increase in endothelial cell
contractility and the resulting oedema induced by H,0O,
[82]. Direct oxidative modification of amino acids has
been shown to activate other important kinases, such as:
1) calmodulin-dependent kinase 1l (CaMKIl), which is
activated in a calcium-independent manner by redox-
dependent methionine oxidation [83]; 2) protein kinase
G1a (PKG1a), which is also activated by ROS with the
oxidation of Cys-42 by H,O, responsible for forming an
intermolecular disulfide bond and generating a highly
active homodimer of this protein kinase [84]; 3) protein
kinase B (PKB/Akt), which is oxidized at a cysteine
residue (Cys124) and redox-dependently activated [85].
Although in contrast with existing literature [65], the
activation of protein phosphatase 2A in a ROS-dependent
manner has been suggested to dephosphorylate and
inactivate PKB [86], which therefore display complex or
perhaps tissue-dependent redox regulation.

Amongst the effect of redox regulation of protein
kinases, there is the modulation of certain transcription
factors. Forkhead box O (FOXO) transcription factors
have been shown to be finely regulated by oxidative
stress, with ROS-dependent inhibition of phosphatase
2A and PTEN responsible for the increase in PI3K/PKB
activity leading to FOXO inactivation counterbalanced
by ROS-dependent activation of ASK1 and JNK



Redox Regulation of the Vascular System

Current Molecular Medicine, 2014, Vol. 14, No. 9 1107

Table 2. Examples of ROS-dependent protein regulation. Protein name, function and redox-dependent type of
regulation and post-translational modification are reported. Abbreviations: AP-1 (activator protein 1); ASK1
(apoptosis signal-regulated kinase 1); ATM (Ataxia Telangiectasia Mutated Protein); CaMKIl (calmodulin-
dependent kinase Il); FAK (focal adhesion kinase); FOXO (Forkhead box O); HDAC (histone deacetylase);
HIF1 (hypoxia-induced factor 1); MKP (mitogen-activated protein kinase phosphatase); NFkB (nuclear factor
kappa beta); PHD (prolyl hydroxylase); Nrf-2 (nuclear factor erythroid 2-related factor 2); PKB/Akt (protein
kinase B); PKC (protein kinase C); PKG1a (protein kinase G1a); PTEN (phosphatase and tensin homolog);
PTP1B (tyrosine phosphatase 1B); PTP2A (tyrosine phosphatase 2a); PTP5 (tyrosine phosphatase 5); SFKs
(Src family kinases); sGC (soluble guanylyl cyclase); Sox (Sry-related HMG box); TRPA1 (Transient Receptor
Potential Ankyrin 1).

Name Catedo Oxidation-Dependent Protein Regulation
gory (In Brackets We Indicate the Associated Molecular Modification, If Known)
SFKs Kinase Activation (S-nitosylation/disulfide bond formation)
Inactivation (homodimerization)
PKCs Kinase Activation
Inactivation (disulfide bond formation)
ATM Kinase Activation (phosphorylation)
CaMKIl Kinase Activation
PKG1a Kinase Activation (homodimerization)
PKB/Akt Kinase Activation
ASKA1 Kinase Activation (multimerization)
PTP1B Phosphatase Inactivation (phosphorylation)
PTP2A Phosphatase Inactivation (phosphorylation)
PTP5 Phosphatase Inactivation (phosphorylation)
MKP Phosphatase Inactivation (phosphorylation)
FAK Tyr phosphatase Phosphatase Inactivation (phosphorylation)
PTEN Phosphatase Inactivation
FOXOs Transcription factor Activation (ASK1-dep. phosphorylation)

AP-1 (Fos/Jun)

Transcription factor

Inactivation (acetylation and PKB-dep. phosphorylation)

Inactivation

NF«B Transcription factor Activation (phosphorylation and degradation of inhibitor 1kB)
Inactivation (disulfide bond formation)
Nrf-2 Transcription factor Activation
HIF-1 Transcription factor Activation (reduced degradation by inhibition of PHD)
SoxR Transcription factor Activation (prostethic group oxidation)
HDACs Transcriptional regulators Inactivation (acetylation)
Integrins Adhesion receptors Activation (disulfide bond formation)
Caspase 9 Protease Activation (disulfide bond formation)
TRPA1 lon channel Activation
sGC Enzyme Activation (heme nitrosylation)
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Fig. (2). Major protein modifications by ROS. Direct oxidation of histidines and cysteines by H20- leads to 2-oxo-hystidines
and sulfenic acid, respectively. Sulfenic acid can be oxidized further to sulfinic and sulfonic acids or can promote disulfide bond
formation. Oxidation of cysteine to sulfenic acid can also be promoted by HOCI, whereas the reaction of this ROS with tyrosine
leads to formation of chlorotyrosine. OH" generates methionine sulfoxide or protein carbonyls. NO can directly S-nitrosylate
cysteine residues or can interaction with 02" to form NOj3’, which in turns determines the formation of 3-nitrosotyrosine. Partial
reduction of H2O2to OH’ is promoted by transition metals iron and copper (Feer and Cu2+). Formation of HOCI from H202 is
catalysed by myeloperoxidases (MPO), while superoxide dismutase (SOD) is responsible for the formation of H,O, from 02"

responsible for FOXO-dependent activation of
antioxidant genes [87]. Direct acetylation of FOXO in
response to ROS treatment has also been shown and
is responsible for the inhibition of the DNA-binding
activity of this transcription factor [87]. In the case of
NF-kB, ROS-induced serine and/or  tyrosine
phosphorylation,  ubiquitination and  consequent
proteolytic degradation of the inhibitor of NF-kB (IkB)

are responsible for nuclear transportation and gene
activation [88]. The protein kinase phosphorylating and
regulating IkB in a RPS-dependent manner are several,
including IkB kinases (IKKs), phosphoinositide 3 kinase
(PI3K), Src and CaMKII [89].

Another important mechanism for ROS-dependent
transcription factor regulation is the ROS-dependent
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modulation of their proteolytic degradation. The most
suggestive example is the hypoxia-induced factor 1
(HIF1), which is proposed to be regulated by ROS-
dependent inhibition of its proteolytic degradation [90].
In this case, the activity of the enzyme prolyl
hydroxylase appears inhibited by H,O, [91]. This in turn
decreases the proteasome-mediated proteolysis of
HIF1a, which heterodimerizes with HIF1B, translocates
to the nucleus and stimulates the expression of key
anti-hypoxic genes, such as vascular endothelial
growth factor (VEGF), angiopoietin, stromal-derived
factor 1 (SDF1) and erythropoietin [92]. Finally,
transcription factors and other genes can be down-
regulated in a ROS-dependent fashion at the
transcription level by hypermethylation of their
promoter regions [93-95]. This ROS-dependent
epigenetic regulation of gene expression appears to be
particularly important in tumor development and
growth.

Besides direct interaction with amino acids, ROS
can react with the prosthetic groups of enzymes and
growth factors, thus significantly affecting their
physiological activity. As mentioned above, the most
important example is the activation of sGC by NO’,
which occurs by binding of the heme moiety within the
enzyme and leads to a 200-fold increase in the enzyme
activity [96]. Transcription factors are also important
targets of ROS-dependent regulation and their
regulation often involves the modification of their
prosthetic groups rather than the modification of their
amino acids. An important example of transcription
factor regulated by redox-dependent modification of a
prosthetic group is bacterial Sox, which regulate the
expression of antioxidant enzymes [97]. In the case of
SoxR, an iron-sulphur cluster in the RNA polymerase-
binding domain is responsible for responding to redox
regulation by showing increased ability to activate gene
transcription in its 02"—dependent oxidized state [98].

ROS-DEPENDENT
NUCLEIC ACIDS

Besides proteins, ROS can also directly modify
nitrogen bases within nucleic acids, which is an
important and well-characterized response to ROS
generation (Fig. 3). Amongst nitrogen bases, guanine
is the most susceptible to ROS-dependent modification
and the product 8-hydroxyguanine (8-OHG) is a key
product of DNA oxidation [99, 100]. 8-oxoguanine (8-
ox0G) [101] and 2,6-diamino-4-hydroxy-5-formamido-
pyrimidine (FapyGua) [102] are other oxidative guanine
modifications found in cellular DNA. The most
important ROS for DNA modification is 102, which
appears to target guanine specifically, and OH’, which
generates a multiplicity of products from all four DNA
bases [103]. OH" has been shown to react with C4, C5
and C8 of guanines and adenines, leading to several
possible products, including 8-OHG, FapyGua, 8-
hydroxyadenine  (8-OHA), and 5-formamido-4,6-
diamino-pyrimidine (FapyAde). The reaction of OH’
with pyrimidines gives rise to 5,6-dihydroxy-5,6-
dihydrothymine  (5,6-diOH-5,6-diHT),  5-hydroxy-5-

MODIFICATION OF
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methylhydantoin (5-OH-5Mel), 5,6-dihydrothymine (5,6-
diHT), 5-hydroxymethyluracil, 5-hydroxyuracil
(isobarbituric acid), 5,6-dihydroxyuracil, 5-
hydroxycytosine (5-OHC) and 5,6-dihydroxycytosine
(5,6-diOHC). OH" can react directly with the
deoxyribose moiety of the DNA leading to the release
of purines and pyrimidines and the formation of abasic
sites and to strand breaks [104, 105]. Besides
oxidation, guanine is also a preferential target for RNS-
mediated modification. Amongst possible nitration
products of guanine, 8-nitroguanine (8-NO.G) is an
important product proposed to play a role in
inflammatory diseases [106]. NO3 reacts with G to yield
8-nitroguanine (8-NO,G) [107, 108] and 5-nitro-
guanidinohydantoin (NI) [107, 109]. Furthermore, ROS-
dependent  generation of 8-OHG and 5-
hydroxymethylcytosine (5-OHMeC) has been shown to
have important consequences on the interaction of
DNA with methyl-binding proteins (MBPs) recognition
sequence [110, 111], thus providing evidence that
ROS-induced DNA damage interferes with DNA
methylation-dependent regulation of gene expression.
This is responsible for the down-regulation of different
transcription factors and anti-tumor proteins [93-95].
Gene expression can also be increased by DNA
oxidation. The most important example is the VEGF
promoter, which is oxidized by mitochondrial ROS thus
resulting in increased interaction with the transcription
factor HIF1a [112, 113]. Another important example of
ROS-induced gene expression is associated with the
expression of important genes such as oestrogen
receptor, androgen receptor, retinoic acid receptor,
thyroxin receptor and activating protein 1 [114].
Specific regulatory sites in these genes are oxidized by
the HyO, produced by lysine-specific histone
demethylase 1A (KDM1A), which leads to generation of
8-0xoG and in turns attracts the interaction of the
enzyme 8-oxoG DNA glycosylase | (OGG1). Ultimately,
OGG1 causes single strand DNA breaks responsible
for the recruitment of topoisomerase Ilb, which
changes DNA conformation at promoter regions,
stimulate transcription factor binding and initiates DNA
transcription [115].

ROS GENERATION
TISSUES AND CELLS

NADPH Oxidases

NADPH oxidases (NOX) are a group of multimeric
enzymes whose activity results in the production of Oy”
as a consequence of the transfer of electrons from
NADPH to molecular oxygen. First identified in
phagocytic cells, they mediate the respiratory burst
associated with pathogen phagocytosis and innate
immune response [116]. The deficiency in the ability of
NOXs to generate O,” is responsible for reduced
microbicidal activity of leukocytes and the development
of the rare condition known as chronic granulomatous
disease (or CGD) [117]. There are seven NOXs,
NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and
DUOX2 [118]. They represent the catalytic core of a
multimeric complex which generates primarily O,

IN CARDIOVASCULAR
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Fig. (3). Major nucleic acid modifications by ROS. 0, selectively oxidizes guanine leading to formation of 8-hydroxyguanine
(8-OHG) 8-oxoguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamido-pyrimidine (FapyGua), while OH' generates a
multiplicity of products from all four DNA bases, including 8-OHG, 8-xoxG, FapyGua, 8-hydroxyadenine (8-OHA), 5-formamido-
4,6-diamino-pyrimidine (FapyAde), 5,6-dihydroxy-5,6-dihydrothymine (5,6-diOH-5,6-diHT), 5-hydroxy-5-methylhydantoin (5-OH-

5Mel), 5,6-dihydrothymine  (5,6-diHT),
hydroxymethylcytosine (5-OHMeC). Moreover,
guanidinohydantoin (NI).

NO3

although H,O, appears to be generated by DUOX1,
DUOX2 and NOX4 due to delayed dissociation of O,”
and its dismutation before release [119, 120]. Di-/tri-
tyrosine and protein cross-linking can also be
generated by the peroxidase-like domain of DUOX1
and DUOX2 [121]. NOX complexes also include
several regulatory proteins, which participate in the
maturation and localization of the NOX complexes in

5-hydroxycytosine
reacts with G to yield 8-nitroguanine (8-NO;G) and 5-nitro-

(5-OHC), 5,6-dihydroxycytosine  (5,6-diOHC) and 5-

biological membranes (p22°™*, DUOX activator 1 or
DUOXA1 and DUOX activator 2 or DUOXA 2), regulate
their enzymatic activity (p67°" and NOX activator 1 or
NOXA1) and determine their spatial organization
(p47°™, p40P™* and NOX organizer 1 or NOXO1) [122,
123]. The small cytoplasmic GTPase Rac1 and Rac2
are also involved in the activation of certain NOX1,
NOX2 and NOX3 [124].
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NOXs are important sources of ROS in the vascular
wall, with endothelial cells expressing NOX1, NOX2,
NOX4 and NOX5 [125], vascular smooth muscle cells
expressing NOX1, NOX4 and NOX5 [126], and
adventitial fibroblasts expressing NOX2 and NOX4
[127]. The hyperactivity or upregulation of NOXs in the
vascular wall and the consequent overproduction of
O, are critical for the development of endothelial injury
associated with vascular diseases. The link with
vascular diseases has been demonstrated for NOX2
[128-130] and NOX 1 [131-134], whereas the role of
NOX4 remains controversial possibly as a
consequence of the different catalytic activity of this
enzyme compared to NOX1 and NOX2 (i.e. co-
production of H;O, rather than 0O,7) [119, 120].
Amongst circulating cells in the cardiovascular system,
as mentioned above, NOX2 has long been known to be
expressed and functionally relevant in cells involved in
the innate immune response, such as neutrophils,
monocytes and macrophages [135]. Red blood cells
have also been shown to express NOXs [136] and the
enzymatic generation of has been linked with the cell
fragility of sickle cell disease [137]. NOX2 (or Gp91™™™)
and different regulatory subunits of the NOX complex
(p22°™* p47°™* and p67°") have been known to be
expressed in human platelets [138-141], while only
recently we proved also the expression of NOX1 [142].

Uncoupled Endothelial Nitric Oxide Synthase

All nitric oxide synthase (NOS), including the
endothelial form (eNOS), require tetrahydrobiopterin
(BH4) and L-arginine to dimerize and generate NO',
respectively. The availability of BH4 is determined by
regulation of its synthesis and degradation to BH2
[143]. The reduction of BH4 levels results in the
“uncoupling” of NOS activity from NO’ generation,
which results in oxygen reduction and generation of
0O,". Oxidative stress, angiotensin Il, homocysteine,
folate and vitamin C have been shown to reduce BH4
bioavailability and induce eNOS uncoupling, which is
implicated in the vascular complications of diabetes,
coronary artery disease, cardiac failure and ischemia-
reperfusion injury [143]. The validity of this hypothesis
has been suggested by studies showing that the
administration of exogenous BH4 helps reducing the
vascular dysfunction associated with different
cardiovascular diseases [144].

Xanthine Oxidase

Xanthine oxidase (XO) is generated by oxidation of
sulfhydryl groups and proteolysis of the precursor
enzyme xanthine oxidoreductase (XOR) during
inflammatory events, such as ischemia and age-related
tissue damage [145, 146]. XO contains six electrons
that can be ftransferred to molecular oxygen to
generate two O, and two H,0, per XO molecules and
catalyzes the two-step conversion of hypoxanthine to
uric acid [145, 147]. Alternatively, in healthy conditions,
XOR is mostly converted to xanthine dehydrogenase
(XDH), which preferentially transfers electrons to NAD+
to generate NADH. The transition from XDH to XO is
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regulated by disulfide bond formation and proteolysis
[148]. The increase in XO in inflammatory vascular
conditions is at least partially responsible for the
elevation of ROS generation in myocardial failure,
coronary artery disease and vascular aging [145, 146,
149, 150]. The reaction of XO-derived O, with NO™ has
also been shown to generate NOj, which is
responsible for endothelial dysfunction in cigarette
smokers [151]. For these reasons, inhibitors of XO
have been proposed for the treatment of vascular aging
and cardiovascular diseases [152-154].

Mitochondrial Respiratory Metabolism

O," can be generated non-enzymatically by transfer
of a single electron to molecular oxygen from prosthetic
groups such as flavins, ubisemiquinone, or iron-sulfur
clusters. The mitochondrial electron transport chain is
characterized by several redox centers, which transfer
electrons to oxygen and may release O, as a
consequence of the incomplete reduction of molecular
oxygen [155]. Although there are tissue-specific and
physiological state-specific variations in the relative
contribution of different mitochondrial redox complexes
to the generation of O,", complex Il has an important
role in ROS generation within heart, lungs and the
vascular system [90, 156]. Complex Ill transfers
electrons from ubiquinol to cytochrome ¢ and couples
this process to the translocation of protons across the
mitochondrial inner membrane. The electron transfer
occurs via a series of intermediate acceptors including
cytochrome bsgg, Cytochrome bsg,, Rieske Fe-S protein
and cytochrome c¢1 [157]. Experimental evidence
obtained pharmacologically suggests that O, is
generated downstream of the Rieske Fe-S proteins as
a consequence of the autoxidation of the
ubisemiquinone intermediate within the mitochondrial
inner membrane and sequestration of one electron by
membrane-permeable molecular oxygen [90, 158,
159]. Overall, the generation of O," is balanced by the
enzymatic activity of manganese superoxide dismutase
(MnSOD) within the mitochondrial matrix or copper-zinc
superoxide dismutase (CuzZnSOD) in the
intermembrane space [160, 161], which tightly regulate
the accumulation of ROS in mitochondria. The
production of ROS by the mitochondria is an important
response to hypoxia, which activates a series of
adaptive changes in gene expression and cell
physiology. Complex Ill also appears critically involved
in the hypoxic mitochondrial generation of ROS [90].

Cyclooxygenases and Lipoxygenases

Cyclooxygenases (COXs) are responsible for the
conversion of arachidonic acid into prostaglandin H2
(PGH2) via a two-step process leading to formation of
prostaglandin G2 (PGG2) and its subsequent reduction
to PGH2 by the peroxidase site of the enzyme. PGH2
serves as precursor for the production of different
members of the prostaglandins family and for the
generations of thromboxanes [162]. Although
cyclooxygenases function via formation of a tyrosine
hydroxyl radical able to catalyze the final reduction of
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PGG2 to PGH2, their ability to generate ROS in the
cellular environment has been questioned in several
experimental models [163, 164]. Interestingly, recent
studies in Chang Liver (CHL) cells suggested that
COXs upregulate the expression of NOXs through
generation of prostaglandins and stimulation of
prostaglandin receptors, thus indirectly increasing the
generation of O, [165]. On the other hand, in the
cardiovascular system, the activity of endothelial COXs
has been suggested to be necessary for endothelial-
dependent vascular constriction and COXs have been
shown to directly generate ROS [166]. In ex-vivo
experiments on explanted blood vessels, the
contracting effect of COXs was dependent on the
generation of ROS, as proved by the inhibitory effect of
ROS scavengers [167-169]. More recently, treatment of
hypertensive animals with COX inhibitors reduced the
expression of NOXs and the generation of ROS, which
ultimately abolished the hypertensive phenotype both
in vivo and ex vivo [170]. Unfortunately, the results
from this study do not clarify whether the activation of
COX is directly responsible for ROS generation in vivo
or whether it acts via upregulation of the ROS-
generating enzymes NOXs, which was previously
suggested [165].

Lipoxygenases (LOXs) are another class of enzyme
able to generate ROS. LOX catalyze the oxygenation
of fatty acids (mostly arachidonic acid) to fatty acid-
hydroperoxide and they are classified as 5-, 8-, 12- or
15-LOX depending on which carbon atom they target.
The oxidized products that they generate can induce
oxidative changes in the redox balance of the cell
[171]. Similarly to COXs, the generation of ROS
associated to LOX activation seems to be mediated by
expression, membrane translocation and activity
stimulation of NOXs [172, 173]. The functional coupling
of LOXs and NOXs has also been observed in the
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physio-pathology of the cardiovascular system, where
12/15-LOX contributes to vascular hyperpermeability
via a NADPH oxidase-dependent mechanism [174].
Unfortunately, it is impossible to determine whether
previous studies reporting LOX-dependent ROS
generation in vascular tissues and cells also described
a NOX-dependent phenomenon [175, 176].

Hemoglobin Autoxidation

The spontaneous oxidation of ferrous ion (Fe®") to
ferric ion (Fe®") leads to formation of methemoglobin
and O," at low oxygen concentration or oxide radical
('OOH) in conditions of high oxygen [177]. Moreover,
0," can be dismutated to H,O,, which oxidises ferrous
and ferric ion further to ferryl ion (Fe*") or ferryl protein
radicals, respectively [136]. Hemoglobin autoxidation
leads to loss of oxygen transporting function and heme
group/iron ions liberation, which has been suggested to
participate in inflammatory response and vascular
diseases [178, 179].

FUNCTIONS OF ROS IN THE HEALTHY
CARDIOVASCULAR SYSTEM

The role of ROS in oxidative stress, cell death and
disease is a highly investigated area of biomedical
research that requires in depth discussion that lies
outside the scope of this review. Some examples of
redox-dependent mechanisms of disease development
are shown in Table 3. This aspect of ROS biology has
been efficiently summarized in other literature reviews
[180, 181]. Within the cardiovascular system, the toxic
effect of ROS on vascular cells has been associated
with O,"- and H,0,-dependent stimulation of mitogen
activated protein kinases (MAPKSs), tyrosine kinases,
Rho kinase and several transcription factors including
NF-kB, and HIF-1 [182, 183]. Here, we will focus on the

Table 3. Examples of ROS-dependent disease mechanisms. This table presents a list of diseases characterised by
redox-dependent pathogenesis (left column), the accepted mechanism of involvement of redox unbalance in
disease etiology (central column) and a recent study/review explaining the link between ROS generation and
the disease (right column).

Disease Redox Mechanism Reference
Alzheimer Lipid peroxidation in cortical neurons [321]

Protein nitration/peroxidation in cortical neurons [322, 323]

Neurodegeneration Oxidative DNA damage in neurons [324, 325]

Multiple sclerosis Protein/DNA oxidation in oligodendrocytes and astrocyte [326, 327]
Type 1 diabetes ROS-dependent release of inflammatory cytokines and B cell destruction [328]
Type 2 diabetes ROS-dependent destruction of B cells [329]
Vasculardgomplications of ROS-dependent dysfunction of endothelial cells [330]

iabetes

Chronic kidney disease Oxidative stress/oxidative nucleic acid damage in renal cells [331]
Atherosclerosis Inactivation of nitric oxide by ROS and redox-dependent endothelial cell dysfunction [332]

Hypertension ROS-dependent DNA modification and gene expression changes in vascular cells [332, 333]
Pulmonary hypertension Hydrogen peroxide-dependent smooth muscle cell proliferation and vascular medial thickening [334]
Atrial fibrillation ROS-dependent alteration of atrial conductances [335]
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Fig. (4). Roles of ROS in the vascular system. ROS play several roles in the cardiovascular system, including promoting
microbicidal activity and cell migration in phagocytes, stimulating endothelial cell motility and proliferation, endothelial
permeability and angiogenesis. Vascular tone is dually regulated by ROS, with H202 and NO' acting as vasorelaxing agents and
02" acting as a vasoconstricting agent. Similarly, platelets and the haemostatic response display dual regulation by ROS, with
02" and H202 promoting platelet activation while NO" inhibits platelet function. Abbreviation: allbB3 (integrin allbp3); ADP
(adenosine diphosphate); cAMP (cyclic adenosine monophosphate); cGMP (cyclic guanosine monophosphate); COX
(cyclooxygenase); eNOS (endothelial nitric oxide synthase); ERK (extracellular-regulated kinase); HIF1 (hypoxia-induced factor
1); Ki (potassium channel); NADH (nicotinamide adenine dinucleotide); GPVI (glycoprotein VI); NADPH (nicotinamide adenine
dinucleotide phosphate hydrogen); NFkB (nuclear factor kappa beta); NO (nitric oxide); NOX (NADPH oxidase); Nrf-2 (nuclear
factor erythroid 2—-related factor 2); PDE3A (phosphodiesterase 3A); PDI (protein disulfide isomerase); PKA (protein kinase A);
PKC (protein kinase C); PKG (protein kinase G); SDF-1 (stromal-derived factor 1); SFKs (Src family kinases); sGC (soluble
guanylyl cyclase); SOD (superoxide dismutase); VASP (vasodilator activated phosphoprotein); VEGF (vascular endothelial
growth factor); VEGFR2 (vascular endothelial growth factor receptor 2).

physiological roles of ROS in the cardiovascular cell
physiology and signaling [184] rather than their
involvement in the aetiology and progression of
cardiovascular diseases [185-187]. The roles of ROS in
the healthy cardiovascular system are schematically
represented in Fig. (4), which include regulation of: 1)
phagocytes and innate immunity; 2) smooth muscle
cells and vascular contractility; 3) platelets and
haemostasis; 4) endothelial cells and angiogenesis.

Phagocytes and Innate Immunity

The evidence that ROS are important for the innate
immune response and the activity of phagocytes (i.e.
monocytes, macrophages, neutrophils, mast cells and
dendritic cells) is amongst the first observations of a
physiological role for oxidant molecules [188], which

was recently confirmed by the identification of NOX2
mutations as the cause for impaired immune response
in chronic granulomatous disease (CGD) patients
[189]. The ability of ROS to oxidize proteins, DNA,
lipids, carbohydrates and metal-containing prosthetic
group of the respiratory chain is responsible for the
microbicidal activity of these class of physiological
molecules [190]. In this context, NOXs seem to play a
particularly important role as a source of antimicrobial
ROS in the innate immune response [191]. In this
respect, it might be physiologically relevant that NOX2
is expressed in phagocytic cells and other NOXs are
expressed by barrier cells, such as intestinal, skin and
lung epithelium [192]. Other indications of a role in the
immune response for NOX-derived ROS are the
induction of NOX1 expression by the inflammatory
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mediator interferon y [193] and its activation by
lipopolysaccharide-dependent activation of Toll-like
receptor 4 (TLR4) [194]. Similarly, DUOX enzymes
expressed in mucosal cells of bronchi, trachea and
salivary glands have been shown to actively participate
in the immune defense of the respiratory tract by
releasing antimicrobial H-O, in saliva and bronchial
fluids [195].

Besides a fundamental role in the antimicrobial
activity of phagocytes that has been amply
documented in the last 4 decades [196], ROS have
been shown to play a key role in stimulating the
migration of immune cells to the sites of
infection/inflammation [197]. In fact, the activity of
endothelial dual oxidases (DUOXs) and the production
of H,O, have been shown to direct the migration of
leukocytes [198]. Leukocyte migration is stimulated Src
family kinase activation (especially LYN) [199] and
phosphatidylinositol-3,4,5-triphosphate (PIP3)
accumulation due to phosphatase PTEN inhibition
[200]. Interestingly, besides inducing immune cell
migration, high ROS levels at the sites of inflammation
might stimulate leukocytes retention by inhibiting
cytoskeletal rearrangement in an actin
glutathionylation-dependent manner [201].

Smooth Muscle Cells and Vascular Contractility

A critical observation suggesting a role for ROS in
vascular constriction is that the enzymatic activity of
SODs relaxes arterial constriction [202, 203], which
suggests a role for O,” in smooth muscle contraction.
Although it remains to prove a role for direct protein
kinase activation in several experimental systems,
ROS-dependent vasoconstriction depends on protein
kinase activation as suggested by its abolishment in
the presence of non-specific protein kinase inhibitors
[204] or inhibitors specific for protein kinase C [205],
Src kinases [206-208] and extracellular signal
regulated kinases (ERKs) [206]. ROS have also been
shown to regulate the enzymes responsible for the
opposite biochemical function: the protein
phosphatases [209, 210]. Similarly to regulation of
other protein function, the regulation of protein kinase
and protein phosphatases in smooth muscle cells has
been suggested to be associated with ROS-dependent
oxidation or nitrosylation of reactive cysteine residues
[211] or tyrosine nitrosylation [212].

Interestingly, the effect on vascular tone appears to
depend on the chemical nature of ROS, with different
effects of O,” and H,O, Besides a vasoconstricting
effect due to the scavenging of endothelial NO™ [213,
214], O," has also been proposed to directly contract
smooth muscle cells via activation of different kinases,
including Src kinases [207], Rho kinases [207] and
ERKs [215]. On the other hand, the role of H;O; is
more complex with reports of a vasoconstricting effect
mediated by Src kinases [216] or protein kinase C [205,
217] and contrasting reports of a vasorelaxing role on
arteries preconstricted with phenylepinephrine or
prostaglandin Fyq via either potassium channel
regulation and cell hyperpolarization or protein kinase
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modulation [218-220]. Some clarity on this matter has
been made by more recent studies describing a range
of different effects elicited by H,O: in explanted aorta,
consisting of: 1) direct cyclooxygenase activation and
consequent contracting effect on blood vessel; 2)
activation of endothelial potassium ion channels and
increase in NO generation in endothelium (which leads
to vessel relaxation); 3) activation of smooth muscle
cell potassium ion channels and endothelium-
independent relaxation; 4) permanent damage of
smooth muscle cells and reduction of their contractility
[221]. Initial indications that OH" might be responsible
for the contraction induced by the activity of xanthine
oxidase have been dismissed by a study demonstrating
that the OH’-dependent non-physiological permanent
damage of vascular tissue in the experimental settings
used was at the base of these claims [222-224],

NQ" deserves a separate description in the context
of vascular tone regulation. In fact, NO' is one of the
most characterized vasodilating physiological signals
[15]. Shear stress and paracrine mediators such as
acetylcholine and bradykinin stimulate the release of
NO’ from endothelial cells [225], where it is synthesized
by eNOS in a Ca™- and calmodulin-dependent manner
[226]. Conversely, the inducible form of NOS (iNOS) is
released by many cell types as a consequence of
cytokine exposure and participates in inflammatory
vasodilation [227]. Endothelial NO' diffuses to the
deeper layers of the vascular wall and activates
guanylate cyclase (GC) in smooth muscle cells, which
in turn leads to increased intracellular levels of cGMP,
activation of protein kinases and phosphorylation of
several downstream effector including sarcolemmal
potassium channels [228] and plasma membrane
calcium-activated potassium channels [229]. This leads
to membrane hyperpolarization and inactivation of
calcium channels, which in turn causes reduction in the
intracellular calcium increase necessary for calmodulin
activation, myosin light chain (MLC) phosphorylation
and ultimately smooth muscle contraction. Amongst
different physiological sources of NO', deoxygenated
hemoglobin prevalent in hypoxic conditions has been
shown to possess nitrite reductase activity, generate
NO" from nitrite and nitrate ions [230], and stimulate
hypoxia-dependent vasodilation [231].

Notably, other ROS of endothelial origin have been
shown to increase smooth muscle cell contraction. In
particular, endothelial cyclooxygenases appear to be
responsible for the generation of ROS [166] and their
transfer to smooth muscle cells via myo-endothelial
gap junctions [232]. Endothelial ROS seem to promote
vascular contraction by amplifying the response of
thromboxane receptors in smooth muscle [167, 233].

Platelets and Haemostasis

Original observations of a potentiatory effect of Oy~
on platelet activation appeared in the 1970s [234].
More recently, O, has been suggested to stimulate
platelet hyperactivity in anoxia/reoxygenation conditions
[235] and hypercholesterolemia [236]. Besides classical
agonist-induced protein phosphorylation pathways
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[237, 238], platelet activation is therefore also regulated
by ROS. The dependence of platelet activation on ROS
generation explains the inhibition of platelets and the
anti-thrombotic effect of antioxidants [239].

Besides responding to exogenous ROS [240],
platelets also generate different ROS upon activation
[241]. Although the molecular mechanism of platelet
regulation by O, is still largely undefined, the
pharmacological inhibition of O,” generation has been
shown to attenuate platelet aggregation in response to
different agonists [242-244] and the genetic ablation of
NOX2 resulted in the reduction of platelet recruitment
to the vascular wall in hypercholesterolemic mice [236].
Several potential mechanism of action have been
proposed, including increasing the bioavailability of
platelet-derived ADP [243], scavenging of endothelial
cell- and platelet-derived nitric oxide (NO’) [245],
directly potentiating integrin allbf3 activation [246, 247]
or collagen receptor GPVI signalling [248, 249] or
protein kinase C [78]. A credible mechanism of action
for the dependence of -collagen-induced platelet
activation is that GPVI signaling depends on
disulphide-dependent dimerization [249] and
consequent dimerization of GPVI receptors [248]. This
is also supported by our results [142]. Notably,
although previous studies reported the dependence of
the other major platelet collagen receptor integrin a2f31
on ROS [250], the use of the GPVI-specific agonist
convulxin  and collagen related peptide (CRP)
confirmed that NOX-dependent generation of O,”
directly potentiates GPVI signaling. Besides O,", also
H202 has been shown to activate platelets when
added exogenously [251, 252], to be generated by the
platelets in response to collagen stimulation [253] and
to potentiate the response to this agonist [254]. Despite
this wealth of information, it is currently difficult to reach
a definitive explanation of the ROS-dependence of
platelet activation. This is probably at least partially due
to the fact that different ROS have different effect on
platelet activation. For example, in our laboratory we
observed the ablation of collagen signaling and
consequent functional responses following NOX
inhibition with 2-acetylphenothiazine [142], whereas
thrombin responses are abolished by the non-specific
inhibition of ROS accumulation by apocynin [142, 255].
Besides NOXs, other ROS-generating enzymes have
been suggested to participate in the cascade of
molecular events leading to platelet activation, such as
LOXs [176, 256] and mitochondrial respiratory
complexes [257]. Another aspect to consider is the
effect of extracellular redox regulation of platelets. So
far in this paragraph, we discussed intracellular
generation and regulatory activity of ROS, but
extracellular ROS accumulation in response to platelet
release has also been observed. Once again, there are
discrepancies in literature regarding the regulation and
mechanisms of extracellular ROS generation. Several
studies report that thrombin stimulates intracellular but
not extracellular ROS generation [242, 243], whereas
other investigators present data in favor of thrombin-
dependent stimulation of extracellular ROS generation
[138, 142]. Our experiments with luminol and platelet

Current Molecular Medicine, 2014, Vol. 14, No. 9 1115

supernatants are in agreement with the latter position.
Similarly, collagen has been shown to induce
extracellular ROS formation in certain reports [138,
243], whereas only intracellular ROS generation was
reported in other studies [242, 258]. The extracellular
redox state affects platelet responsiveness by affecting
surface receptor redox state, conformation and function
[259]. Because of their redox-dependent modulation
[260, 261], thiol isomerases have been proposed as
important redox-dependent regulators of platelet
activity [259, 262]. Their release and re-association
with platelet surface and their ability to modulate
disulfide bridge formation within or amongst
extracellular domains of platelet receptors such as
integrin allbB3 has important potentiatory effects on
platelet activity [263, 264]. Because of the important
activatory/potentiatory role of ROS in platelets and the
key role of these cells in the development of thrombotic
conditions and vascular affections, a significant amount
of research has been dedicated to the identification and
characterization of natural antioxidants to be utilized as
antiplatelet drugs or food supplement sin our continuing
fight against cardiovascular disease [265, 266],
although there is still little evidence of their efficacy
[267].

In this section dedicated to platelets, the well-
documented and characterized role of NO' as
physiological antithrombotic signal cannot be omitted.
In contrast to other ROS, NO' is a key physiological
inhibitor of platelet activation and is constantly released
by intact endothelium to maintain platelet resting state
and guarantee blood flow [18, 268]. Because of its
lipophilic nature, NO' crosses the plasma membrane
and activates soluble guanylate cyclase (sGC) of
platelets [269]. The binding of NO"to the heme moiety
of sGC leads to a 200-fold increase in enzyme activity
and the accumulation of intracellular cGMP, which in
turns activates protein kinase G (PKG) and reduces
platelet responsiveness [270]. Moreover, the
phosphorylation and inactivation of phosphodiesterase
3A by PKG leads to cAMP accumulation and protein
kinase A (PKA) activation [271]. The stimulation of
PKG by NO’ has several important consequences in
platelet signaling, including: 1) ablation of intracellular
calcium increase by phosphorylation and inactivation of
the inositol triphosphate receptor (IP3R) [272] and the
IP3R-associated cGMP kinase substrate (IRAG) [273]
on the endoplasmic reticulum; 2) inhibition of the
cytoskeletal rearrangements necessary for platelet
adhesion and aggregation via phosphorylation of
vasodilator activated phosphoprotein (VASP) and
consequent suppression of actin polymerization [274];
3) abolishment of adhesion and spreading through
inhibiton of dense granule release and integrin
signalling [275].

Endothelial
Permeability

Cells, Angiogenesis and Vascular

As mentioned in section B on protein transcription
factor regulation, ROS has been proposed to play a
key in role in initiating the angiogenic response to
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hypoxia [90, 91]. The hypoxia-dependent increase in
ROS generation is responsible for the inhibition of
prolyl hydroxylation and degradation of HIF1a, which
leads transcriptional activation of HIF-dependent genes
that include VEGF and other pro-angiogenic factors
such as angiopoietin 2 and stromal derived factor 1
(SDF1) [92]. Hypoxia-dependent ROS generation in the
mitochondria has been proposed as the trigger for the
activation of the HIF-dependent response [91, 276-
278]. Besides mitochondrial ROS, NOX enzymatic
activity is critical in the regulation of angiogenesis, as
proved in models of tumor angiogenesis experiments
using NOX1 null mice [279]. This observation confirms
previous studies showing that NOX1-derived ROS
trigger angiogenesis [280], that NOX4 activity is
necessary to sustain high HIF1a and VEGF expression
levels in cancer cells [281] and that NOX5 is required
for the formation of endothelial capillary networks [282].
Besides VEGF, the expression of other relevant
effectors of the angiogenic response is stimulated in a
ROS-dependent manner. For example, the expression
of VEGF receptor 2 (VEGFR2) in bovine aortic
endothelial cells is upregulated by H»O, in an NFkB-
dependent manner, which plays a relevant role in the
response of these cells to oxidative aggression [283].

As well as an upstream effect on the expression of
angiogenic factors and receptors, ROS play a key role
in the signalling of the angiogenic response. The
angiogenic responses stimulated by VEGF [284-287],
angiopoietin [288], leptin [289] or seeding on the
reconstituted extracellular matrix support Matrigel™
[290] are all characterised and at least partially
dependent on an increase in intracellular ROS. Early
signalling events of VEGF stimulation have been
shown to depend on ROS generation that includes
receptor autophosphorylation [291] and peroxynitrite-
dependent Src kinase activation [292]. Although there
is some pharmacological evidence for the involvement
of lipoxygenase in the generation of ROS downstream
of VEGF [291], amongst the possible source of
endothelial ROS in response to the angiogenic
stimulus, NOX2 appears to be an important component
of the signalling pathway of VEGF in vitro [286, 293].
Experiments in vivo confirmed the role of NOX2 in the
signalling pathways and functional response induced
by VEGF. NOX2" mice are in fact characterised by
impaired neovascularisation in response to VEGF [286]
and reduced blood-flow recovery after experimental
ischemia [294]. An interesting aspect of the NOX-
dependent regulation of endothelial cell physiology and
angiogenesis is the participation of the small GTPase
Rac and in particular the role of Rac-dependent ROS in
the regulation of endothelial cell-cell interactions [295]
and angiogenesis [291]. Rac has been shown to play
an important role in the formation of the NOX complex
and its activation [124], so Rac-dependent ROS are
likely to rely on the enzymatic activity of NOXs, as
shown for the angiogenic response induced by VEGF
[293]. Interestingly, a-catenin phosphorylation in
response to Rac-dependent ROS generation has been
shown to induce cell-cell interaction reduction and
promotion of endothelial cell motility [295]. The
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interaction of NOXs with Rac is critical for the
localization of NOX at the leading edge of migrating
endothelial cells and for the local accumulation of ROS
[296-298]. PI3K [296] and WAVE1 [299] are other
important effectors in the compartmentalization of
NOXs and ROS generation downstream of VEGF-
dependent stimulation of endothelial cell motility and
angiogenesis. IQGAP1 is another partner of VEGFR2
and is implicated in the generation of intracellular ROS
in response to VEGF stimulation, which is necessary
for Akt phosphorylation, endothelial migration, and
proliferation [287]. From the molecular point of view
IQGAP1 is a scaffolding protein fundamental for the
formation of the macromolecular signaling complex
including VEGFR2 and NOX2 at the leading edge of
migrating endothelial cells [300]. The localization of
NOX at the leading edge is critical for the local
formation of ROS and the formation of sulfenic acid by
oxidation of cysteine residues of key signaling proteins,
including ERK, protein phosphatase 1B (PTP1B) and
IQGAP1 itself [46]. This post-translational modification
of signaling proteins by VEGF plays an important role
in the promotion of endothelial cell motility and
angiogenesis [46]. Besides regulating cell motility the
function of IQGAP1 within the VEGFR2 signalosome is
to modulate ROS-dependent tyrosine phosphorylation
of VE-cadherin and loss of cell-cell contacts necessary
to initiate angiogenesis [301].

Besides their role in the migration and proliferation
of mature endothelial cells, ROS have also been shown
to play a role in the regulation of endothelial progenitor
cells, hence affecting vasculogenesis besides
angiogenesis [302]. Similarly to mature endothelial
cells, NOX2 appear to play a major role in the
participation of endothelial progenitor cells in the
process of neovascularization [303]. Interestingly
though, ROS levels in endothelial progenitor cells tend
to be lower than in mature endothelial cells because of
higher levels of physiological antioxidants [304]. Low
levels of ROS appear to be important to maintain the
proliferative and undifferentiated phenotype of
endothelial progenitor cells [304, 305]. Because of the
importance of ROS in the regulation of angiogenic and
vasculogenic responses, it is not surprisingly that
natural antioxidants have often been shown to interfere
with the revascularization/neovascularization response
[306-310]. Nonetheless, the complexity of the ROS-
dependent regulation of angiogenesis is suggested by
studies in which excessive ROS generation had an
inhibitory effect, hence suggesting that optimal ROS
concentrations are necessary for an efficient
angiogenic response [311, 312].

ROS also modulate endothelial cell permeability by
regulating adherens junction formation. Oxidative
stress has in fact been shown to increase
microvascular permeability [313, 314] and to play a role
in the wvascular dysfunctions linked diabetic
microangiopathy. Although cell damage by ROS has
been considered the cause for increase vascular
permeability in the presence of ROS, more subtle
molecular mechanisms are becoming apparent.
Interestingly, besides initiating angiogenesis [295],
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VEGF-induced Rac-mediated disruption of adherens
junctions associated with tyrosine phosphorylation of
adhesion proteins (VE-cadherin and B-catenin) also
leads to increased endothelial permeability [315]. ROS
have been shown to compromise endothelial barrier
function in different experimental systems by
stimulation of p38 mitogen-activated protein kinase
(MAPK) and cytoskeletal rearrangements in bovine
lung microvascular endothelial cells [316], or inhibition
of GSK-3B, activation of Akt and cytoskeletal
rearrangements in culture human microvascular cells
[317], or activation of RhoA and PI3 kinase leading to
protein kinase B (PKB/Akt) activation and redistribution
of tight junction proteins claudin-5 and occluding in
cultured in cultured brain endothelial cell [318], or
stimulation of synthesis and release of interleukin-6 (IL-
6) in human umbilical vein endothelial cells [319]. ROS
appear to play an important role in the endothelial
hyperpermeability associated to inflammatory
conditions. In this context it is important to mention the
proposed use of ROS scavengers to counteract the
vascular hyperpermeability associated with
inflammation [320].

CONCLUSION AND REMARKS

Great advances have been made in the
understanding of the sources, physiological roles and
mechanisms of action of ROS in the cardiovascular
system in the last decade. Although key roles in the
regulation of immune response, vascular tone,
haemostasis, vascular permeability and angiogenesis
have been elucidated, there is a lot more to understand
regarding the redox-dependent regulation of vascular
health. An improvement in the experimental tools and a
standardization of investigation methods and
experimental models appear necessary in order to
clarify key aspects of this area of cardiovascular
research and exploit the interventional opportunities
that it offers.
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