2,788 research outputs found

    Relativistic dissipative hydrodynamics with spontaneous symmetry breaking

    Full text link
    In this paper we consider dissipative hydrodynamic equations for systems with continuous broken symmetries. We first present the case of superfluidity, in which the symmetry U(1) is broken and then generalize to the chiral symmetry SU(2)LĂ—SU(2)RSU(2)_L \times SU(2)_R. The corresponding new transport coefficients are introduced.Comment: 5 pages, RevTeX Minor changes, version accepted for publicatio

    Three-sublattice Skyrmion crystal in the antiferromagnetic triangular lattice

    Get PDF
    The frustrated classical antiferromagnetic Heisenberg model with Dzyaloshinskii-Moriya (DM) interactions on the triangular lattice is studied under a magnetic field by means of semiclassical calculations and large-scale Monte Carlo simulations. We show that even a small DM interaction induces the formation of an Antiferromagnetic Skyrmion crystal (AF-SkX) state. Unlike what is observed in ferromagnetic materials, we show that the AF-SkX state consists of three interpenetrating Skyrmion crystals (one by sublattice), and most importantly, the AF-SkX state seems to survive in the limit of zero temperature. To characterize the phase diagram we compute the average of the topological order parameter which can be associated to the number of topological charges or Skyrmions. As the magnetic field increases this parameter presents a clear jump, indicating a discontinuous transition from a spiral phase into the AF-SkX phase, where multiple Bragg peaks coexist in the spin structure factor. For higher fields, a second (probably continuous) transition occurs into a featureless paramagnetic phase.Comment: 8 pages, 8 figure

    Ground states of quantum kagome antiferromagnets in a magnetic field

    Full text link
    We study the ground state properties of a quantum antiferromagnet in the kagome lattice in the presence of a magnetic field, paying particular attention to the stability of the plateau at magnetization 1/3 of saturation. While the plateau is reinforced by certain deformations of the lattice, like the introduction of structural defect lines and against an Ising anisotropy, ground state correlations are seen to be quite different and the undistorted SU(2) case appears to be rather special.Comment: 3 pages, 3 figures, contribution to the Japanese-French symposium on "Quantum magnetism in spin, charge and orbital systems", Paris 1-4 October 200

    Hydrodynamics with spontaneous symmetry breaking: application to relativistic heavy ion collisions

    Get PDF
    In this paper we apply hydrodynamics for systems with continuous broken symmetries to heavy ion collisions in the framework of (1+1) dimensional Bjorken model. The temperature profile with respect to proper time determined in that context exhibits no differences with the ideal fluid. On the contrary, it is shown that the profile obtained when M\"{u}ller-Israel-Stewart second order theory of dissipation is included on top of standard hydrodynamics indicates a slower cooling of the system.Comment: 5 pages, 2 figures, version accepted for publication as a Brief Report in Physical Review

    Quantum phase transitions in three-leg spin tubes

    Full text link
    We investigate the properties of a three-leg quantum spin tube using several techniques such as the density matrix renormalization group method, strong coupling approaches and the non linear sigma model. For integer spins S, the model proves to exhibit a particularly rich phase diagram consisting of an ensemble of 2S phase transitions. They can be accurately identified by the behavior of a non local string order parameter associated to the breaking of a hidden symmetry in the Hamiltonian. The nature of these transitions are further elucidated within the different approaches. We carry a detailed DMRG analysis in the specific cases S = 1. The numerical data confirm the existence of two Haldane phases with broken hidden symmetry separated by a trivial singlet state. The study of the gap and of the von Neumann entropy suggest a first order phase transition but at the close proximity of a tricritical point separating a gapless and a first order transition line in the phase diagram of the quantum spin tube.Comment: 20 pages, 18 figure

    Bosonization and density-matrix renormalization group studies of Fulde-Ferrell-Larkin-Ovchinnikov phase and irrational magnetization plateaus in coupled chains

    Full text link
    We review the properties of two coupled fermionic chains, or ladders, under a magnetic field parallel to the lattice plane. Results are computed by complementary analytical (bosonization) and numerical (density-matrix renormalization group) methods which allows a systematic comparison. Limiting cases such as coupled bands and coupled chains regimes are discussed. We particularly focus on the evolution of the superconducting correlations under increasing field and on the presence of irrational magnetization plateaus. We found the existence of large doping-dependent magnetization plateaus in the weakly-interacting and strong-coupling limits and in the non-trivial case of isotropic couplings. We report on the existence of extended Fulde-Ferrell-Larkin-Ovchinnikov phases within the isotropic t-J and Hubbard models, deduced from the evolution of different observables under magnetic field. Emphasis is put on the variety of superconducting order parameters present at high magnetic field. We have also computed the evolution of the Luttinger exponent corresponding to the ungaped spin mode appearing at finite magnetization. In the coupled chain regime, the possibility of having polarized triplet pairing under high field is predicted by bosonization.Comment: 18 pages, 19 figure

    Statistical transmutation in doped quantum dimer models

    Get PDF
    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e. bosonic into fermionic or vice-versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables to define duality equivalence between doped quantum dimer Hamiltonians, and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model, with special focus on the topological Z2 dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity and fermionic phases is investigated in the four families.Comment: 3 figure
    • …
    corecore