690 research outputs found
Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α : modulation by p38 MAPK
The transcriptional coactivator PPAR gamma coactivator 1 α (PGC-1α) is a key regulator of metabolic processes such as mitochondrial biogenesis and respiration in muscle and gluconeogenesis in liver. Reduced levels of PGC-1α in humans have been associated with type II diabetes. PGC-1α contains a negative regulatory domain that attenuates its transcriptional activity. This negative regulation is removed by phosphorylation of PGC-1α by p38 MAPK, an important kinase downstream of cytokine signaling in muscle and β-adrenergic signaling in brown fat. We describe here the identification of p160 myb binding protein (p160MBP) as a repressor of PGC-1α. The binding and repression of PGC-1α by p160MBP is disrupted by p38 MAPK phosphorylation of PGC-1α. Adenoviral expression of p160MBP in myoblasts strongly reduces PGC-1α's ability to stimulate mitochondrial respiration and the expression of the genes of the electron transport system. This repression does not require removal of PGC-1α from chromatin, suggesting that p160MBP is or recruits a direct transcriptional suppressor. Overall, these data indicate that p160MBP is a powerful negative regulator of PGC-1α function and provide a molecular mechanism for the activation of PGC-1α by p38 MAPK. The discovery of p160MBP as a PGC-1α regulator has important implications for the understanding of energy balance and diabetes
Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death
Electron transport chain (ETC) defects occurring from mitochondrial disease mutations compromise ATP synthesis and render cells vulnerable to nutrient and oxidative stress conditions. This bioenergetic failure is thought to underlie pathologies associated with mitochondrial diseases. However, the precise metabolic processes resulting from a defective mitochondrial ETC that compromise cell viability under stress conditions are not entirely understood. We design a whole genome gain-of-function CRISPR activation screen using human mitochondrial disease complex I (CI) mutant cells to identify genes whose increased function rescue glucose restriction-induced cell death. The top hit of the screen is the cytosolic Malic Enzyme (ME1), that is sufficient to enable survival and proliferation of CI mutant cells under nutrient stress conditions. Unexpectedly, this metabolic rescue is independent of increased ATP synthesis through glycolysis or oxidative phosphorylation, but dependent on ME1-produced NADPH and glutathione (GSH). Survival upon nutrient stress or pentose phosphate pathway (PPP) inhibition depends on compensatory NADPH production through the mitochondrial one-carbon metabolism that is severely compromised in CI mutant cells. Importantly, this defective CI-dependent decrease in mitochondrial NADPH production pathway or genetic ablation of SHMT2 causes strong increases in inflammatory cytokine signatures associated with redox dependent induction of ASK1 and activation of stress kinases p38 and JNK. These studies find that a major defect of CI deficiencies is decreased mitochondrial one-carbon NADPH production that is associated with increased inflammation and cell death.This work was supported by the National Institute of Health, Grants RO1
CA181217 NCI, RO1 GM121452 NIGMS, and NIH 5 R01 DK089883-08 and Department
of Defense CDMRP W81XWH-17-1-0216 to P.P. E.B. was supported in part by an
EMBO postdoctoral fellowship and MDA Development Grant. E.A.P. was supported by
NIHF30 (1F30DE028206-01A1). C.F.B was supported by F32GM125243. S.P.G. was
supported by an NIH grant GM6794
ApoE−/− PGC-1α−/− Mice Display Reduced IL-18 Levels and Do Not Develop Enhanced Atherosclerosis
BACKGROUND: Atherosclerosis is a chronic inflammatory disease that evolves from the interaction of activated endothelial cells, macrophages, lymphocytes and modified lipoproteins (LDLs). In the last years many molecules with crucial metabolic functions have been shown to prevent important steps in the progression of atherogenesis, including peroxisome proliferator activated receptors (PPARs) and the class III histone deacetylase (HDAC) SIRT1. The PPARγ coactivator 1 alpha (Ppargc1a or PGC-1α) was identified as an important transcriptional cofactor of PPARγ and is activated by SIRT1. The aim of this study was to analyze total PGC-1α deficiency in an atherosclerotic mouse model. METHODOLOGY/PRINCIPAL FINDINGS: To investigate if total PGC-1α deficiency affects atherosclerosis, we compared ApoE(-/-) PGC-1α(-/-) and ApoE(-/-) PGC-1α(+/+) mice kept on a high cholesterol diet. Despite having more macrophages and a higher ICAM-1 expression in plaques, ApoE(-/-) PGC-1α(-/-) did not display more or larger atherosclerotic plaques than their ApoE(-/-) PGC-1α(+/+) littermates. In line with the previously published phenotype of PGC-1α(-/-) mice, ApoE(-/-) PGC-1α(-/-) mice had marked reduced body, liver and epididymal white adipose tissue (WAT) weight. VLDL/LDL-cholesterol and triglyceride contents were also reduced. Aortic expression of PPARα and PPARγ, two crucial regulators for adipocyte differentiation and glucose and lipid metabolism, as well as the expression of some PPAR target genes was significantly reduced in ApoE(-/-) PGC-1α(-/-) mice. Importantly, the epididymal WAT and aortic expression of IL-18 and IL-18 plasma levels, a pro-atherosclerotic cytokine, was markedly reduced in ApoE(-/-) PGC-1α(-/-) mice. CONCLUSIONS/SIGNIFICANCE: ApoE(-/-) PGC-1α(-/-) mice, similar as PGC-1α(-/-) mice exhibit markedly reduced total body and visceral fat weight. Since inflammation of visceral fat is a crucial trigger of atherogenesis, decreased visceral fat in PGC-1α-deficient mice may explain why these mice do not develop enhanced atherosclerosis
Role of Esrrg in the Fibrate-Mediated Regulation of Lipid Metabolism Genes in Human ApoA-I Transgenic Mice
We have used a new ApoA-I transgenic mouse model to identify by global gene expression profiling, candidate genes that affect lipid and lipoprotein metabolism in response to fenofibrate treatment. Multilevel bioinformatical analysis and stringent selection criteria (2-fold change, 0% false discovery rate) identified 267 significantly changed genes involved in several molecular pathways. The fenofibrate-treated group did not have significantly altered levels of hepatic human APOA-I mRNA and plasma ApoA-I compared with the control group. However, the treatment increased cholesterol levels to 1.95-fold mainly due to the increase in high-density lipoprotein (HDL) cholesterol. The observed changes in HDL are associated with the upregulation of genes involved in phospholipid biosynthesis and lipid hydrolysis, as well as phospholipid transfer protein. Significant upregulation was observed in genes involved in fatty acid transport and β-oxidation, but not in those of fatty acid and cholesterol biosynthesis, Krebs cycle and gluconeogenesis. Fenofibrate changed significantly the expression of seven transcription factors. The estrogen receptor-related gamma gene was upregulated 2.36-fold and had a significant positive correlation with genes of lipid and lipoprotein metabolism and mitochondrial functions, indicating an important role of this orphan receptor in mediating the fenofibrate-induced activation of a specific subset of its target genes.National Institutes of Health (HL48739 and HL68216); European Union (LSHM-CT-2006-0376331, LSHG-CT-2006-037277); the Biomedical Research Foundation of the Academy of Athens; the Hellenic Cardiological Society; the John F Kostopoulos Foundatio
PGC-1α Is a Key Regulator of Glucose-Induced Proliferation and Migration in Vascular Smooth Muscle Cells
BACKGROUND: Atherosclerosis is a complex pathological condition caused by a number of mechanisms including the accelerated proliferation of vascular smooth muscle cells (VSMCs). Diabetes is likely to be an important risk factor for atherosclerosis, as hyperglycemia induces vascular smooth muscle cell (VSMC) proliferation and migration and may thus contribute to the formation of atherosclerotic lesions. This study was performed to investigate whether PGC-1alpha, a PPARgamma coactivator and metabolic master regulator, plays a role in regulating VSMC proliferation and migration induced by high glucose. METHODOLOGY/PRINCIPAL FINDINGS: PGC-1alpha mRNA levels are decreased in blood vessel media of STZ-treated diabetic rats. In cultured rat VSMCs, high glucose dose-dependently inhibits PGC-1alpha mRNA expression. Overexpression of PGC-1alpha either by infection with adenovirus, or by stimulation with palmitic acid, significantly reduces high glucose-induced VSMC proliferation and migration. In contrast, suppression of PGC-1alpha by siRNA mimics the effects of glucose on VSMCs. Finally, mechanistic studies suggest that PGC-1alpha-mediated inhibition of VSMC proliferation and migration is regulated through preventing ERK1/2 phosphorylation. CONCLUSIONS/SIGNIFICANCE: These results indicate that PGC-1alpha is a key regulator of high glucose-induced proliferation and migration in VSMCs, and suggest that elevation of PGC-1alpha in VSMC could be a useful strategy in preventing the development of diabetic atherosclerosis
Cell-Type Specific Expression of a Dominant Negative PKA Mutation in Mice
We employed the Cre recombinase/loxP system to create a mouse line in which PKA activity can be inhibited in any cell-type that expresses Cre recombinase. The mouse line carries a mutant Prkar1a allele encoding a glycine to aspartate substitution at position 324 in the carboxy-terminal cAMP-binding domain (site B). This mutation produces a dominant negative RIα regulatory subunit (RIαB) and leads to inhibition of PKA activity. Insertion of a loxP-flanked neomycin cassette in the intron preceding the site B mutation prevents expression of the mutant RIαB allele until Cre-mediated excision of the cassette occurs. Embryonic stem cells expressing RIαB demonstrated a reduction in PKA activity and inhibition of cAMP-responsive gene expression. Mice expressing RIαB in hepatocytes exhibited reduced PKA activity, normal fasting induced gene expression, and enhanced glucose disposal. Activation of the RIαB allele in vivo provides a novel system for the analysis of PKA function in physiology
- …