1,297 research outputs found

    The time course of recombinant production in Streptomyces coelicolor.

    Get PDF
    SUMMARYThe process leading to gene recombination can be interrupted in the filamentous bacteriaStreptomyces coelicolorby growing mixed cultures on cellophane disks lying on complete medium. The mycelium is harvested, broken, diluted and the broken hyphae plated at different time intervals. By this means some markers can be excluded from heteroclones or from recombinant progeny in early samples. The recombinant pattern clearly changes with time, with an increase of markers contributed to the recombinant progeny. In crosses between male (NF) and female (UF) strains, the maleness is the first donor trait to appear in the cells of the recipient parent. The fertility factor does not produce a transfer origin on the donor chromosomes; the donor contribution may extend on either side or on both sides of the factor which appears to be compulsory for zygote formation. The longer the time of contact between parental cells, the longer the segment of the donor chromosome contributing to the recombinant progeny. When spores are formed they contain almost exclusively recombinant nuclei derived from segregation processes

    Isolation and genetic characterisation of CD133+ VE cell population from a paediatric astrocytoma short-term cell culture

    Get PDF
    Each year in the UK 4,400 people are diagnosed with primary brain tumours. The most common of these are astrocytomas with the most malignant having poor prognosis despite aggressive treatments. Genetic studies have shown chromosomal changes in adult high-grade astrocytomas which differ to those seen within the paediatric population. In recent years the tumour stem cell hypothesis has been put forward which suggests that tumours have a sub-population of cells similar to adult stem cells. These tumour stem cells can be isolated from other cells in a tumour from their expression of CD 133 protein. The aim of this study was to investigate DNA copy number aberrations of CD 133 positive and CD 133 negative cells found in a paediatric glioblastoma multiforme. Cells expressing CD 133 were isolated using a monoclonal antibody for CD 133 labelled with APC and the expression of CD 133 was confirmed with fluorescence microscopy. DNA was extracted from both CD 133 positive and CD 133 negative cells and copy number aberrations analysed using a high-density oligonucleotide 244k array. DNA copy number aberrations were found to differ between the CD133 positive and CD133 negative cells. Further genetic research of these cell sub-populations may alter the way in which high-grade paediatric brain tumours are treated in the future

    Malfunction and Bad Behavior Diagnosis on Domestic Environment

    Get PDF
    Abstract Greenhouse gas emissions from homes arise primarily from fossil fuels burned for heat, the use of products that contain greenhouse gases, and the handling of waste. Human activities are responsible for almost all of the increase in greenhouse gases in the atmosphere over the last 150 years. The household sector is one of the biggest aggregate consumers and this is the reason why increasingly policies have been considering it. One of the key factors in curbing energy consumption in this sector is widely recognized to be due to erroneous behaviors and systems malfunctioning, mainly explained by the lack of awareness of the final user; so, training the final user to energy awareness can be more effective and cheaper than other policies. In this context, energy management in homes is playing, and will play even more in future, a key role in increasing the final consumer awareness towards its own energy consumption and consequently in bursting its active role in smart grids. The aim of this paper is to highlight the economic benefits of low cost intelligent control domestic devices, to identify energy behavior, system status and improve energy efficiency. The scope is to develop interaction between final users to create a network of energy consumption efficiency. The paper presents an application of Multi-scale Principal Component Analysis to diagnose inefficient occupant behavior and systems malfunctioning and suggest good practices of energy conservation

    Inorganic phosphate is a trigger factor for Microbispora sp. ATCC-PTA-5024 growth and NAI-107 production

    Get PDF
    BACKGROUND: NAI-107, produced by the actinomycete Microbispora sp. ATCC-PTA-5024, is a promising lantibiotic active against Gram-positive bacteria and currently in late preclinical-phase. Lantibiotics (lanthionine-containing antibiotics) are ribosomally synthesized and post-translationally modified peptides (RiPPs), encoded by structural genes as precursor peptides. The biosynthesis of biologically active compounds is developmentally controlled and it depends upon a variety of environmental stimuli and conditions. Inorganic phosphate (Pi) usually negatively regulates biologically-active molecule production in Actinomycetes, while it has been reported to have a positive control on lantibiotic production in Firmicutes strains. So far, no information is available concerning the Pi effect on lantibiotic biosynthesis in Actinomycetes. RESULTS: After having developed a suitable defined medium, Pi-limiting conditions were established and confirmed by quantitative analysis of polyphosphate accumulation and of expression of selected Pho regulon genes, involved in the Pi-limitation stress response. Then, the effect of Pi on Microbispora growth and NAI-107 biosynthesis was investigated in a defined medium containing increasing Pi amounts. Altogether, our analyses revealed that phosphate is necessary for growth and positively influences both growth and NAI-107 production up to a concentration of 5 mM. Higher Pi concentrations were not found to further stimulate Microbispora growth and NAI-107 production. CONCLUSION: These results, on one hand, enlarge the knowledge on Microbispora physiology, and, on the other one, could be helpful to develop a robust and economically feasible production process of NAI-107 as a drug for human use. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-014-0133-0) contains supplementary material, which is available to authorized users

    Infectious transfer of a fertility factor in Streptomyces coelicolor

    Get PDF
    SUMMARYInitial Fertility (IF) strains ofStreptomyces coelicolorare able to convert recipient strains (UF) to the IF condition by contact, without concomitant transfer of chromosomal markers. The conversion is prevented by the presence of acridine orange in the medium of the mixed culture. Acridine orange is also moderately effective in inducing the formation of UF variants from IF-treated strains. No effect of the drug is observed on UF variant formation from Normal Fertility (NF) strains nor on the behaviour of the fertility factor in NF × UF mixed cultures. The hypothesis is put forward that the fertility factor works as an episome inS. coelicolor, fixed to the chromosome in the NF strains, free in the IF strains and missing in the UF strains

    Unravelling the DNA sequences carried by Streptomyces coelicolor membrane vesicles

    Get PDF
    Membrane vesicles (MVs) are spherical particles with nanoscale dimensions and characterized by the presence of diverse cargos, such as nucleic acids, proteins, lipids, and cellular metabolites. Many examples of (micro)organisms producing MVs are reported in literature. Among them, bacterial MVs are of particular interest because they are now considered as the fourth mechanism of horizontal gene transfer. Streptomyces bacteria are well-known for their ecological roles and ability to synthesize bioactive compounds, with Streptomyces coelicolor being the model organism. It was previously demonstrated that it can produce distinct populations of MVs characterized by different protein and metabolite cargos. In this work we demonstrated for the first time that MVs of S. coelicolor carry both DNA and RNA and that their DNA content represents the entire chromosome of the bacterium. These findings suggest that MV DNA could have a role in the evolution of Streptomyces genomes and that MVs could be exploited in new strain engineering strategies

    Seed transcriptome annotation reveals enhanced expression of genes related to ros homeostasis and ethylene metabolism at alternating temperatures in wild cardoon

    Get PDF
    The association among environmental cues, ethylene response, ABA signaling, and reactive oxygen species (ROS) homeostasis in the process of seed dormancy release is nowadays well-established in many species. Alternating temperatures are recognized as one of the main environmental signals determining dormancy release, but their underlying mechanisms are scarcely known. Dry after-ripened wild cardoon achenes germinated poorly at a constant temperature of 20, 15, or 10◦C, whereas germination was stimulated by 80% at alternating temperatures of 20/10◦C. Using an RNA-Seq approach, we identified 23,640 and annotated 14,078 gene transcripts expressed in dry achenes and achenes exposed to constant or alternating temperatures. Transcriptional patterns identified in dry condition included seed reserve and response to dehydration stress genes (i.e., HSPs, peroxidases, and LEAs). At a constant temperature, we observed an upregulation of ABA biosynthesis genes (i.e., NCED9), ABA-responsive genes (i.e., ABI5 and TAP), as well as other genes previously related to physiological dormancy and inhibition of germination. However, the alternating temperatures were associated with the upregulation of ethylene metabolism (i.e., ACO1, 4, and ACS10) and signaling (i.e., EXPs) genes and ROS homeostasis regulators genes (i.e., RBOH and CAT). Accordingly, the ethylene production was twice as high at alternating than at constant temperatures. The presence in the germination medium of ethylene or ROS synthesis and signaling inhibitors reduced significantly, but not completely, germination at 20/10◦C. Conversely, the presence of methyl viologen and salicylhydroxamic acid (SHAM), a peroxidase inhibitor, partially increased germination at constant temperature. Taken together, the present study provides the first insights into the gene expression patterns and physiological response associated with dormancy release at alternating temperatures in wild cardoon (Cynara cardunculus var. sylvestris).Fil: Huarte, Hector Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Lomas de Zamora; ArgentinaFil: Puglia, Giuseppe. D.. Consiglio Nazionale delle Ricerche; ItaliaFil: Prjibelski, Andrey D.. Academia de Ciencias de Rusia.; RusiaFil: Raccuia, Salvatore A.. Consiglio Nazionale delle Ricerche; Itali

    Time-Dependent Density-Functional Theory for Trapped Strongly-Interacting Fermionic Atoms

    Get PDF
    The dynamics of strongly interacting trapped dilute Fermi gases (dilute in the sense that the range of interatomic potential is small compared with inter-particle spacing) is investigated in a single-equation approach to the time-dependent density-functional theory. Our results are in good agreement with recent experimental data in the BCS-BEC crossover regime. It is also shown that the calculated corrections to the hydrodynamic approximation may be important even for systems with a rather large number of atoms.Comment: Resubmitted to PRA in response to referee's comments. Abstract is changed. Added new figure
    corecore