3,103 research outputs found

    Properties of quasi-periodic pulsations in solar flares from a single active region

    Get PDF
    We investigate the properties of a set of solar flares originating from a single active region (AR) that exhibit QPPs, and look for signs of the QPP periods relating to AR properties. The AR studied, best known as NOAA 12192, was unusually long-lived and produced 181 flares. Data from the GOES, EVE, Fermi, Vernov and NoRH observatories were used to determine if QPPs were present in the flares. For the soft X-ray GOES and EVE data, the time derivative of the signal was used. Power spectra of the time series data (without any form of detrending) were inspected, and flares with a peak above the 95% confidence level in the spectrum were labelled as having candidate QPPs. The confidence levels were determined taking account of uncertainties and the possible presence of red noise. AR properties were determined using HMI line of sight magnetograms. A total of 37 flares (20% of the sample) show good evidence of having QPPs, and some of the pulsations can be seen in data from multiple instruments and in different wavebands. The QPP periods show a weak correlation with the flare amplitude and duration, but this may be due to an observational bias. A stronger correlation was found between the QPP period and duration of the QPP signal, which can be partially but not entirely explained by observational constraints. No correlations were found with the AR area, bipole separation, or average magnetic field strength. The fact that a substantial fraction of the flare sample showed evidence of QPPs using a strict detection method with minimal processing of the data demonstrates that these QPPs are a real phenomenon, which cannot be explained by the presence of red noise or the superposition of multiple unrelated flares. The lack of correlation between the QPP periods and AR properties implies that the small-scale structure of the AR is important, and/or that different QPP mechanisms act in different cases.Comment: 23 pages, 57 figures. Accepted for publication by Astronomy & Astrophysic

    The formation of Laurentia : Evidence from shear wave splitting

    Get PDF
    The authors would like to thank A. Walker for invaluable help understanding the MSAT forward modelling code, as well as A. Boyce, L. Petrescu, and C. Ogden of the ICcratons group for numerous enlightening conversations about Canadian Precam- brian geology and beyond. M.V. Liddell is funded by an Imperial College President’s Scholarship. F.A. Darbyshire is supported by the Natural Sciences and Environment Research Council of Canada through their Discovery Grant and Canada Research Chair programmes.Peer reviewedPublisher PD

    Oscillations in stellar superflares

    Get PDF
    Two different mechanisms may act to induce quasi-periodic pulsations (QPP) in whole-disk observations of stellar flares. One mechanism may be magneto-hydromagnetic (MHD) forces and other processes acting on flare loops as seen in the Sun. The other mechanism may be forced local acoustic oscillations due to the high-energy particle impulse generated by the flare (known as `sunquakes' in the Sun). We analyze short-cadence Kepler data of 257 flares in 75 stars to search for QPP in the flare decay branch or post-flare oscillations which may be attributed to either of these two mechanisms. About 18 percent of stellar flares show a distinct bump in the flare decay branch of unknown origin. The bump does not seem to be a highly-damped global oscillation because the periods of the bumps derived from wavelet analysis do not correlate with any stellar parameter. We detected damped oscillations covering several cycles (QPP), in seven flares on five stars. The periods of these oscillations also do not correlate with any stellar parameter, suggesting that these may be a due to flare loop oscillations. We searched for forced global oscillations which might result after a strong flare. To this end, we investigated the behaviour of the amplitudes of solar-like oscillations in eight stars before and after a flare. However, no clear amplitude change could be detected. We also analyzed the amplitudes of the self-excited pulsations in two delta Scuti stars and one gamma Doradus star before and after a flare. Again, no clear amplitude changes were found. Our conclusions are that a new process needs to be found to explain the high incidence of bumps in stellar flare light curves, that flare loop oscillations may have been detected in a few stars and that no conclusive evidence exists as yet for flare induced global acoustic oscillations (starquakes).Comment: 13 pages, 14 figures, 3 table

    A multi-period oscillation in a stellar superflare

    Get PDF
    Flares that are orders of magnitude larger than the most energetic solar flares are routinely observed on Sun-like stars, raising the question of whether the same physical processes are responsible for both solar and stellar flares. In this Letter, we present a white-light stellar superflare on the star KIC 9655129, observed by NASA's Kepler mission, with a rare multi-period quasi-periodic pulsation (QPP) pattern. Two significant periodic processes were detected using the wavelet and autocorrelation techniques, with periods of 78 ± 12 minutes and 32 ± 2 minutes. By comparing the phases and decay times of the two periodicities, the QPP signal was found to most likely be linear, suggesting that the two periodicities are independent, possibly corresponding either to different magnetohydrodynamic (MHD) modes of the flaring region or different spatial harmonics of the same mode. The presence of multiple periodicities is a good indication that the QPPs were caused by MHD oscillations and suggests that the physical processes in operation during stellar flares could be the same as those in solar flares

    Scaling laws of quasi-periodic pulsations in solar flares

    Get PDF
    Context Quasi-periodic pulsations (QPPs) are a common feature of solar flares, but previously there has been a lack of observational evidence to support any of the theoretical models that might explain the origin of these QPPs. Aims. We aimed to determine if there are any relationships between the QPP period and other properties of the flaring region, using the sample of flares with QPPs from Pugh et al. (2017b). If any relationships exist then these can be compared with scaling laws for the theoretical QPP mechanisms. Methods To obtain the flaring region properties we made use of the Atmospheric Imaging Assembly (AIA) 1600 Å and Helioseismic and Magnetic Imager (HMI) data. The AIA 1600 Å images allow the flare ribbons to be seen while the HMI magnetograms allow the positive and negative magnetic polarity ribbons to be distinguished and the magnetic properties determined. The ribbon properties calculated in this study were the ribbon separation distance, area, total unsigned magnetic flux, and average magnetic field strength. Only the flares that occurred within 60◦ of the solar disk centre were included, which meant a sample of 20 flares with 22 QPP signals. Results Positive correlations were found between the QPP period and the ribbon properties. The strongest correlations were with the separation distance and magnetic flux. Because these ribbon properties also correlate with the flare duration, and the relationship between the QPP period and flare duration may be influenced by observational bias, we also made use of simulated data to check if artificial correlations could be introduced. These simulations show that although QPPs cannot be detected for certain combinations of QPP period and flare duration, this does not introduce an apparent correlation. Conclusions. There is evidence of relationships between the QPP period and flare ribbon properties, and in the future the derived scaling laws between these properties can be compared to equivalent scaling laws for theoretical QPP mechanisms

    Physical properties of thermoelectric zinc antimonide using first-principles calculations

    Full text link
    We report first principles calculations of the structural, electronic, elastic and vibrational properties of the semiconducting orthorhombic ZnSb compound. We study also the intrinsic point defects in order to eventually improve the thermoelectric properties of this already very promising thermoelectric material. Concerning the electronic properties, in addition to the band structure, we show that the Zn (Sb) crystallographically equivalent atoms are not exactly equivalent from the electronic point of view. Lattice dynamics, elastic and thermodynamic properties are found to be in good agreement with experiments and they confirm the non equivalency of the zinc and antimony atoms from the vibrational point of view. The calculated elastic properties show a relatively weak anisotropy and the hardest direction is the y direction. We observe the presence of low energy modes involving both Zn and Sb atoms at about 5-6 meV, similarly to what has been found in Zn4Sb3 and we suggest that the interactions of these modes with acoustic phonons could explain the relatively low thermal conductivity of ZnSb. Zinc vacancies are the most stable defects and this explains the intrinsic p-type conductivity of ZnSb.Comment: 33 pages, 8 figure

    Statistical properties of quasi-periodic pulsations in white-light flares observed with Kepler

    Get PDF
    We embark on a study of quasi-periodic pulsations (QPPs) in the decay phase of white-light stellar flares observed by Kepler. Out of the 1439 flares on 216 different stars detected in the short-cadence data using an automated search, 56 flares are found to have pronounced QPP-like signatures in the light curve, of which 11 have stable decaying oscillations. No correlation is found between the QPP period and the stellar temperature, radius, rotation period and surface gravity, suggesting that the QPPs are independent of global stellar parameters. Hence they are likely to be the result of processes occurring in the local environment. There is also no significant correlation between the QPP period and flare energy, however there is evidence that the period scales with the QPP decay time for the Gaussian damping scenario, but not to a significant degree for the exponentially damped case. This same scaling has been observed for MHD oscillations on the Sun, suggesting that they could be the cause of the QPPs in those flares. Scaling laws of the flare energy are also investigated, supporting previous reports of a strong correlation between the flare energy and stellar temperature/radius. A negative correlation between the flare energy and stellar surface gravity is also found

    Confinement-Induced Nonlocality and Casimir Force in Transdimensional Systems

    Full text link
    We study within the framework of the Lifshitz theory the long-range Casimir force for in-plane isotropic and anisotropic free-standing transdimensional material slabs. In the former case, we show that the confinement-induced nonlocality not only weakens the attraction of ultrathin slabs but also changes the distance dependence of the material-dependent correction to the Casimir force to go as  ⁣1/ ⁣l\sim\!1/\!\sqrt{l} contrary to the  ⁣1/l\sim\!1/l dependence of that of the local Lifshitz force. In the latter case, we use closely packed array of parallel aligned single-wall carbon nanotubes in a dielectric layer of finite thickness to demonstrate strong orientational anisotropy and crossover behavior for the inter-slab attractive force in addition to its reduction with decreasing slab thickness. We give physical insight as to why such a pair of ultrathin slabs prefers to stick together in the perpendicularly oriented manner, rather than in the parallel relative orientation as one would customarily expect.Comment: 20 pages, 4 figures, 52 reference
    corecore