We investigate the properties of a set of solar flares originating from a
single active region (AR) that exhibit QPPs, and look for signs of the QPP
periods relating to AR properties. The AR studied, best known as NOAA 12192,
was unusually long-lived and produced 181 flares. Data from the GOES, EVE,
Fermi, Vernov and NoRH observatories were used to determine if QPPs were
present in the flares. For the soft X-ray GOES and EVE data, the time
derivative of the signal was used. Power spectra of the time series data
(without any form of detrending) were inspected, and flares with a peak above
the 95% confidence level in the spectrum were labelled as having candidate
QPPs. The confidence levels were determined taking account of uncertainties and
the possible presence of red noise. AR properties were determined using HMI
line of sight magnetograms. A total of 37 flares (20% of the sample) show good
evidence of having QPPs, and some of the pulsations can be seen in data from
multiple instruments and in different wavebands. The QPP periods show a weak
correlation with the flare amplitude and duration, but this may be due to an
observational bias. A stronger correlation was found between the QPP period and
duration of the QPP signal, which can be partially but not entirely explained
by observational constraints. No correlations were found with the AR area,
bipole separation, or average magnetic field strength. The fact that a
substantial fraction of the flare sample showed evidence of QPPs using a strict
detection method with minimal processing of the data demonstrates that these
QPPs are a real phenomenon, which cannot be explained by the presence of red
noise or the superposition of multiple unrelated flares. The lack of
correlation between the QPP periods and AR properties implies that the
small-scale structure of the AR is important, and/or that different QPP
mechanisms act in different cases.Comment: 23 pages, 57 figures. Accepted for publication by Astronomy &
Astrophysic